Endometrial NK cells in repeated implantation failure – quantity and functional markers

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Alteration in the composition and function of endometrial immune cells, in particular NK cells, are associated with implantation and placentation pathology, which is considered as one of the causes of reproductive losses. However, data regarding abnormalities in the number and activity of NK cells in repeated implantation failures, including depending on the type of infertility, remain ambiguous.

AIM: The aim of this study was to evaluate the number of CD56+ and CD16+ cells and the area of expression of CD107a and NKG2D markers in the endometrium of patients with repeated implantation failure (RIF).

MATERIALS AND METHODS: This prospective comparative study included patients with RIF (main group I, n = 47), who were divided into two subgroups: Ia, patients with primary infertility (n = 29); Ib, patients with secondary infertility (n = 18). Comparison group II included patients with a history of effective ART programs (n = 17). Control group III included healthy fertile women without a history of reproductive loss (n = 12). Endometrial biopsies were obtained on days 19–23 of the menstrual cycle. The expression of CD56+, CD16+, CD107a and NKG2D was assessed by immunohistochemistry.

RESULTS: In the endometrium of patients in groups I and II, as compared to the control group, the number of CD56+ cells was significantly increased (p < 0.001). In patients of subgroup Ia, when compared to the control group, we verified an increase in the number of CD16+ cells (p < 0.05) and a decrease in the expression of CD107a (p < 0.05). In patients in groups I and II, a negative correlation was revealed between the number of CD56+ and CD16+ cells and the number of pregnancies in history (rs = –0.30 and rs = –0.34, p < 0.05), while a positive correlation was found between the expressions of CD56+ and CD107a (rs = 0.66 and rs = 0.75, p < 0.05). In patients in group II, a positive correlation was revealed between the expressions of CD16+ and CD107a (rs = 0.75, p < 0.05). In the endometrial stroma, CD107a expression increased significantly in patients in group I (p < 0.05), while NKG2D expression increased in groups II and III (p < 0.01, p < 0.05) from the early to the middle stage of the secretion phase. In patients of group II, a positive correlation was established between the expressions of CD56+ and NKG2D (rs = 0.68, p < 0.05).

CONCLUSIONS: In the endometrium of patients with primary infertility and RIF, the number of CD56+ and CD16+ cells is increased with a decrease in the expression of their activation marker CD107a, which may be a potential mechanism for impaired implantation. Further studies of the immune profile of the endometrium may help to personalize diagnostic and therapeutic approaches to management of patients with RIF and to increase the chances of pregnancy in ART programs.

Full Text

Restricted Access

About the authors

Valeria A. Zagaynova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: zagaynovav.al.52@mail.ru
ORCID iD: 0000-0001-6971-7024
Russian Federation, Saint Petersburg

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Inna O. Krikheli

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ovrt@ott.ru
ORCID iD: 0000-0002-5439-1727
SPIN-code: 7356-6189

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Alexander M. Gzgzyan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: agzgzyan@gmail.com
ORCID iD: 0000-0003-3917-9493
SPIN-code: 6412-4801

MD, Dr. Sci. (Med), Professor

Russian Federation, Saint Petersburg

Tatyana G. Tral

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ttg.tral@yandex.ru
ORCID iD: 0000-0001-8948-4811
SPIN-code: 1244-9631

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Gulrukhsor Kh. Tolibova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: gulyatonbova@yandex.ru
ORCID iD: 0000-0002-6216-6220
SPIN-code: 7544-4825

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Dmitry I. Sokolov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: falcojugger@yandex.ru
ORCID iD: 0000-0002-5749-2531
SPIN-code: 3746-0000

Dr. Sci. (Biol.)

Russian Federation, Saint Petersburg

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ovrt@ott.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

References

  1. Ma J, Gao W, Li D. Recurrent implantation failure: a comprehensive summary from etiology to treatment. Front Endocrinol. 2023;13. doi: 10.3389/fendo.2022.1061766
  2. Lédée N, Petitbarat M, Chevrier L, et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am J Reprod Immunol. 2016;75(3):388–401. doi: 10.1111/aji.12483
  3. Cheloufi M, Kazhalawi A, Pinton A, et al. The endometrial immune profiling may positively affect the management of recurrent pregnancy loss. Front Immunol. 2021;12. doi: 10.3389/fimmu.2021.656701
  4. Lapides L, Klein M, Belušáková V, et al. Uterine natural killer cells in the context of implantation: immunohistochemical analysis of endometrial samples from women with habitual abortion and recurrent implantation failure. Physiol Res. 2022;71(1):S99–S105. doi: 10.33549/physiolres.935012
  5. Zhang J, Dunk CE, Kwan M, et al. Human dNK cell function is differentially regulated by extrinsic cellular engagement and intrinsic activating receptors in first and second trimester pregnancy. Cell Mol Immunol. 2017;14(2):203–213. doi: 10.1038/cmi.2015.66
  6. Fraser R, Zenclussen AC. Killer timing: the temporal uterine natural killer cell differentiation pathway and implications for female reproductive health. Front Endocrinol. 2022;13. doi: 10.3389/fendo.2022.904744
  7. Björkström NK, Ljunggren HG, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol. 2016;16(5):310–320. doi: 10.1038/nri.2016.34
  8. Yang HL, Zhou WJ, Lu H, et al. Decidual stromal cells promote the differentiation of CD56bright CD16– NK cells by secreting IL-24 in early pregnancy. Am J Reprod Immunol. 2019;81(6). doi: 10.1111/aji.13110
  9. Pollheimer J, Vondra S, Baltayeva J, et al. Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.02597
  10. Lash GE, Otun HA, Innes BA, et al. Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Hum Reprod. 2010;25(5):1137–1145. doi: 10.1093/humrep/deq050
  11. Diniz-da-Costa M, Kong CS, Fishwick KJ, et al. Characterization of highly proliferative decidual precursor cells during the window of implantation in human endometrium. Stem Cells. 2021;39(8):1067–1080. doi: 10.1002/stem.3367
  12. Tyshchuk EV, Mikhailova VA, Selkov SA, et al. Natural killer cells: origin, phenotype, function. Medical Immunology (Medi tsinskaya Immunologiya). 2202;23(6):1207–1228. (In Russ.) doi: 10.15789/1563-0625-NKC-2330
  13. Yang Y, Wang W, Weng J, et al. Advances in the study of HLA class Ib in maternal-fetal immune tolerance. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.976289
  14. Dons’koi BV, Osypchuk DV, Chernyshov VP, et al. Expression of natural cytotoxicity receptor NKp46 on peripheral blood natural killer cells in women with a history of recurrent implantation failures. J Obstet Gynaecol Res. 2021;47(3):1009–1015. doi: 10.1111/jog.14631
  15. Zhang Y, Huang C, Lian R, et al. The low cytotoxic activity of peripheral blood NK cells may relate to unexplained recurrent miscarriage. Am J Reprod Immunol. 2021;85(6). doi: 10.1111/aji.13388
  16. Fukui A, Funamizu A, Fukuhara R, et al. Expression of natural cytotoxicity receptors and cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or implantation failure, and the expression of natural cytotoxicity receptors on peripheral blood natural killer cells in pregnant women with a history of recurrent pregnancy loss. J Obstet Gynaecol Res. 2017;43(11):1678–1686. doi: 10.1111/jog.13448
  17. Hedlund M, Stenqvist AC, Nagaeva O, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;183(1):340–351. doi: 10.4049/jimmunol.0803477
  18. Abdian Asl A, Vaziri Nezamdoust F, Fesahat F, et al. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: a case-control study. J Obstet Gynaecol. 2021;41(5):774–778. doi: 10.1080/01443615.2020.1798906
  19. Deryabin PI, Borodkina AV. Stromal cell senescence contributes to impaired endometrial decidualization and defective interaction with trophoblast cells. Hum Reprod. 2022;37(7):1505–1524. doi: 10.1093/humrep/deac112
  20. Brighton PJ, Maruyama Y, Fishwick K, et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife. 2017;6. doi: 10.7554/eLife.31274
  21. Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294(1–2):15–22. doi: 10.1016/j.jim.2004.08.008
  22. Zagaynova VA, Kogan IY, Selkov SA, et al. Peripheral blood NK-cells in women with unsuccessful attempts of assisted reproduction: quantity, subpopulation composition and activation markers. Obstetrics and Gynecology. 2022;(9):102–113. (In Russ.) doi: 10.18565/aig.2022.9.102-113
  23. Chiokadze M, Bär C, Pastuschek J, et al. Beyond uterine natural killer cell numbers in unexplained recurrent pregnancy loss: combined analysis of CD45, CD56, CD16, CD57, and CD138. Diagnostics. 2020;10(9):650. doi: 10.3390/diagnostics10090650
  24. Marron K, Walsh D, Harrity C. Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations. J Assist Reprod Genet. 2019;36(2):199–210. doi: 10.1007/s10815-018-1300-8
  25. Giuliani E, Parkin KL, Lessey BA, et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262–269. doi: 10.1111/aji.12259
  26. Von Woon E, Greer O, Shah N, et al. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum Reprod Update. 2022;28(4):548–582. doi: 10.1093/humupd/dmac006
  27. Kwak-Kim J, Bao S, Lee SK, et al. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol. 2014;72(2):129–140. doi: 10.1111/aji.12234
  28. Giuliani E, Parkin KL, Lessey BA, et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262–269. doi: 10.1111/aji.12259
  29. Glover LE, Crosby D, Thiruchelvam U, et al. Uterine natural killer cell progenitor populations predict successful implantation in women with endometriosis-associated infertility. Am J Reprod Immunol. 2018;79(3). doi: 10.1111/aji.12817
  30. Lash GE, Bulmer JN, Li TC, et al. Standardisation of uterine natural killer (uNK) cell measurements in the endometrium of women with recurrent reproductive failure. J Reprod Immunol. 2016;116:50–59. doi: 10.1016/j.jri.2016.04.290
  31. Puente E, Alonso L, Laganà AS, et al. Chronic endometritis: old problem novel insights and future challenges. Int J Fertil Steril. 2020;13(4):250–256. doi: 10.22074/ijfs.2020.5779
  32. Tolibova GKh. Endometrial’naya disfunktsiya u zhenshchin s bes plodiem: patogeneticheskie determinanty i kliniko-morfologiche skaya diagnostika [dissertation]. Saint Petersburg; 2018. (In Russ.) [cited 2023 Oct 2]. Available from: https://ott.ru/files/news/pg/2018_tolibova/dissertatsiia_tolibovoy.pdf
  33. Buzzaccarini G, Vitagliano A, Andrisani A, et al. Chronic endometritis and altered embryo implantation: a unified pathophysiological theory from a literature systematic review. J Assist Reprod Genet. 2020;37(12):2897–2911. doi: 10.1007/s10815-020-01955-8
  34. Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–353. doi: 10.1038/s41586-018-0698-6
  35. Whettlock EM, Woon EV, Cuff AO, et al. Dynamic changes in uterine NK cell subset frequency and function over the menstrual cycle and pregnancy. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.880438
  36. Veljkovic Vujaklija D, Dominovic M, Gulic T, et al. Granulysin expression and the interplay of granulysin and perforin at the maternal-fetal interface. J Reprod Immunol. 2013;97(2):186–196. doi: 10.1016/j.jri.2012.11.003
  37. Fleming DC, King AE, Williams AR, et al. Hormonal contraception can suppress natural antimicrobial gene transcription in human endometrium. Fertil Steril. 2003;79(4):856–863. doi: 10.1016/s0015-0282(02)04930-0
  38. Zhang Y, Zhao A, Wang X, et al. Expressions of natural cytotoxicity receptors and NKG2D on decidual natural killer cells in patients having spontaneous abortions. Fertil Steril. 2008;90(5):1931–1937. doi: 10.1016/j.fertnstert.2007.08.009
  39. Basu S, Pioli PA, Conejo-Garcia J, et al. Estradiol regulates MICA expression in human endometrial cells. Clin Immunol. 2008;129(2):325–332. doi: 10.1016/j.clim.2008.07.005
  40. Vinnars MT, Björk E, Nagaev I, et al. Enhanced Th1 and inflammatory mRNA responses upregulate NK cell cytotoxicity and NKG2D ligand expression in human pre-eclamptic placenta and target it for NK cell attack. Am J Reprod Immunol. 2018;80(1). doi: 10.1111/aji.12969
  41. Muter J, Kong CS, Brosens JJ. The role of decidual subpopulations in implantation, menstruation and miscarriage. Front Reprod Health. 2021;3. doi: 10.3389/frph.2021.804921
  42. Zhang J, Dunk CE, Shynlova O, et al. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine. 2019;39:531–539. doi: 10.1016/j.ebiom.2018.12.015
  43. Jelenčić V, Lenartić M, Wensveen FM, et al. NKG2D: a versatile player in the immune system. Immunol Lett. 2017;189:48–53. doi: 10.1016/j.imlet.2017.04.006

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. CD107a expression in the endometrium, magnification ×400: a, control group III; b, subgroup Ia (with repeated implantation failure); c, subgroups Ia and Ib (with repeated implantation failure), comparison group II and control group III; d, group I (with repeated implantation failure), comparison group II and control group III in the early and middle stage of the secretion phase; * p < 0.05

Download (398KB)
3. Fig. 2. NKG2D expression in the endometrium, magnification ×400: a, subgroup Ia (with repeated implantation failure) in the early stage of the secretion phase; b, control group III in the middle stage of the secretion phase; c, subgroups Ia and Ib (with repeated implantation failure), comparison group II and control group III; d, subgroups Ia and Ib (with repeated implantation failure), comparison group II and control group III in the early and middle stage of the secretion phase; * p < 0.05, ** p < 0.01

Download (387KB)
4. Fig. 3. Correlations between CD56+ expression and CD107a or NKG2D expressions in the endometrial stroma: a, main group I (with repeated implantation failure); b, comparison group II; correlations between CD16+ expression and CD107a or NKG2D expressions in the endometrial stroma; c, main group I (with repeated implantation failure); d, comparison group II

Download (385KB)

Copyright (c) 2023 Eсо-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies