AT-rich interactive domain-containing protein 1A (ARID1A) expression in placentas with late fetal growth restriction

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Fetal growth restriction, which is considered as a multifactorial pathology, is a critical problem in obstetrics. The role of mitochondrial dysfunction in the pathogenesis of fetal growth restriction is not yet clear. However, it is known that it leads to oxidative stress, damage to cells and tissues, and dysfunction of key mechanisms for maintaining energy balance, the outcome of which may be the development of placental insufficiency. It is likely that AT-rich interactive domain-containing protein 1A (ARID1A) is involved in the development and function of the human placenta and may be an important marker in the development of fetal growth restriction.

AIM: The aim of this study was to evaluate ARID1A protein expression in the placental villous tree in late fetal growth restriction.

MATERIALS AND METHODS: This study included 50 placentas from children born at full-term gestation (37–40 weeks). The main study group consisted of placentas with late fetal growth restriction and without major extragenital pathology (n = 35). The control group comprised 15 placentas without fetal growth restriction (n = 15). Histological (n = 50) and immunohistochemical examinations of placentas (15 placentas in the main group and 10 placentas in the control group) using primary monoclonal antibodies to ARID1A were performed.

RESULTS: In the study group with fetal growth restriction, chronic placental insufficiency was verified in all cases, dissociated chronic placental insufficiency (25 cases; 71.4%) being predominant, of which 23 cases (92%) were compensated, including 16 cases (69.6%) with moderate circulatory disorders. Hypoplastic chronic placental insufficiency was diagnosed in ten cases (28.6%) and was subcompensated with the presence of pronounced circulatory disorders. In the arteries of the stem villi, the ARID1A protein expression area did not differ between the study groups (p = 0.096), while in the veins in the stem villi with fetal growth restriction, we verified a decrease compared to control (p = 0.05). In the vascular bed of the villi with subcompensated dissociated chronic placental insufficiency, ARID1A protein expression was higher compared to hypoplastic chronic placental insufficiency (p = 0.041).

CONCLUSIONS: Chronic placental insufficiency combined with fetal growth restriction is a serious complication of pregnancy with the development of structural and functional abnormalities and dysregulation of placental mechanisms. The ARIDA1A protein expression data obtained, depending on the degree of compensation for chronic placental insufficiency, may indicate the activation of compensatory metabolic mechanisms to maintain the functional activity of the placenta and preserve the viability of the fetus.

Full Text

Restricted Access

About the authors

Tatiana G. Tral

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: ttg.tral@yandex.ru
ORCID iD: 0000-0001-8948-4811
SPIN-code: 1244-9631
Scopus Author ID: 37666260400

MD, Cand. Sci. (Med.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Sofia R. Yusenko

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: iusenko.sr@gmail.com
ORCID iD: 0000-0001-7316-8179

MD, postgraduate student

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Gulrukhsor Kh. Tolibova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: gulyatolibova@mail.ru
ORCID iD: 0000-0002-6216-6220
SPIN-code: 7544-4825
Scopus Author ID: 23111355700
ResearcherId: Y-6671-2018

MD, Dr. Sci. (Med)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450
Scopus Author ID: 56895765600
ResearcherId: P-4357-2017

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

References

  1. Burlutskaya AV, Shadrin SA, Starova AV. Physical development of children born with intrauterine development delay. Effective pharmacotherapy. 2019;15(43):20–24. EDN: LFJSXU doi: 10.33978/2307-3586-2019-15-43-20-24
  2. Savchev S, Figueras F, Sanz-Cortes M, et al. Evaluation of anoptimal gestational age cut-off for the definition of early- andlate-onset fetal growth restriction. Fetal Diagn Ther. 2014;36(2):99–105. doi: 10.1159/000355525
  3. Monaghan C, Thilaganathan B. Fetal Growth Restriction (FGR): how the differences between early and late FGR impact on clinical management? J Fetal Med. 2016;3(3):101–107. doi: 10.1007/s40556-016-0098-7
  4. Ignatko IV, Denisova YuV, Filippova YuA, et al. Differential diagnosis of early and late forms of fetal developmental delay syndrome. Ural Medical Journal. 2020;(12):91–97. EDN: LVFMBP doi: 10.25694/URMJ.2020.12.22
  5. Murki S, Sharma D Intrauterine growth retardation — a review article. J Neonatal Biol. 2014;3(3). doi: 10.4172/2167-0897.1000135
  6. Kesavan K, Devaskar SU. Intrauterine growth restriction: postnatal monitoring and outcomes. Pediatr Clin North Am. 2019;66(2):403–423. doi: 10.1016/j.pcl.2018.12.009
  7. Goryunova AG, Simonova MS, Murashko AV. Fetal growth retardation syndrome and placenta adaptation. Archive of obstetrics and gynecology named after V.F. Snegirev. 2016;3(2):76–80. EDN: WFPXJP doi: 10.18821/2313-8726-2016-3-2-76-80
  8. Sidorenko VN, Kukhta IS, Baranovskaya EO, et al. Insufficient fetal growth: modern possibilities of prenatal diagnosis in the practice of an obstetrician-gynecologist. Medical Journal. 2022;(2):143–150. EDN: WEPBUI doi: 10.51922/1818-426X.2022.2.143
  9. Figueras F, Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014;36(2):86–98. doi: 10.1159/000357592
  10. Schreurs CA, Mol BW, de Boer MA. Re: consensus definition for placental fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2017;49(1):159. doi: 10.1002/uog.17321
  11. Zhou X, Han TL, Chen H, et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp Cell Res. 2017;359(1):195–204. doi: 10.1016/j.yexcr.2017.07.029
  12. Bashmakova NV, Tsyvyan PB, Chistyakova GN, et al. The role of endothelial dysfunction in the occurrence of fetal growth retardation syndrome. Russian bulletin of obstetrician-gynecologist. 2017;17(3):21–26. EDN: YSPMRD doi: 10.17116/rosakush201717321-26
  13. Thilaganathan B. Placental syndromes: getting to the heart of the matter. Ultrasound Obstet Gynecol. 2017;49(1):7–9. doi: 10.1002/uog.17378
  14. Mecacci F, Avagliano L, Lisi F, et al. Fetal growth restriction: does an integrated maternal hemodynamic-placental model fit better? Reprod Sci. 2021;28(9):2422–2435. doi: 10.1007/s43032-020-00393-2
  15. Osol G, Ko NL, Mandalà M. Plasticity of the maternal vasculature during pregnancy. Annu Rev Physiol. 2019;81:89–111. doi: 10.1146/annurev-physiol-020518-114435
  16. Sosnina AK, Tral TG, Krylova YS. Functional morphology of the placenta villosa tree in full-term single pregnancy achieved by methods of assisted reproductive technologies. Journal of Obstetrics and women’s diseases. 2016;65(3):43–51. EDN: WDNBUZ doi: 10.17816/JOWD65343-51
  17. Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140(7):698–713. doi: 10.5858/arpa.2015-0225-CC
  18. Malhotra A, Allison BJ, Castillo-Melendez M, et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55. doi: 10.3389/fendo.2019.00055
  19. Bendix I, Miller SL, Winterhager E. Editorial: causes and consequences of intrauterine growth restriction. Front Endocrinol. 2020;11:205. doi: 10.3389/fendo.2020.00205
  20. Nesterova EA, Putilova NV, Tretyakova TB, et al. The role of the genetically determined nature of fetal hemostasis largely leads to the formation of placental insufficiency. Obstetrics and gynecology. 2017;(9):56–62. EDN: ZHDBKN doi: 10.18565/aig.2017.9.58-62
  21. Skripnichenko YuP, Baranov II, Vysokykh MYu. Determination of the level of mitochondrial DNA in the blood for predicting pregnancy complications. Obstetrics and Gynecology. 2018;(2):44–49. EDN: YPUFZV doi: 10.18565/aig.2018.2.44-49
  22. Fantone S, Mazzucchelli R, Giannubilo SR, et al. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia. Histochem Cell Biol. 2020;154(3):339–346. doi: 10.1007/s00418-020-01892-8
  23. Insufficient fetal growth requiring the provision of medical care to the mother (fetal growth retardation) [cited 15.02.2024]. Available from: https://drive.google.com/file/u/0/d/1obB33Yu9x-mjsoPidNnDFTwkFyhc-JhG/view. (In Russ.)
  24. Arzhanova ON, Paykacheva YuM, Ruleva AV. et al. Causes of obstetric complications in patients after assisted reproductive technologies. Journal of obstetrics and women’s diseases. 2017;66(3):25–33. EDN: YZBNPB doi: 10.17816/JOWD66325-33
  25. Yusenko SR, Tral TG, Tolibova GKh, et al. Placental morphology in chronic placental insufficiency and fetal growth restriction. Gynecology, Obstetrics and Perinatology. 2022;21(3):95–101. EDN: VETYIF doi: 10.20953/1726-1678-2022-3-95-101
  26. Unterscheider J, O’Donoghue K, Malone FD. Guidelines on fetal growth restriction: a comparison of recent national publications. Am J Perinatol. 2015;32(4):307–315. doi: 10.1055/s-0034-1387927
  27. Sanchez-Aranguren L, Nadeem S. Bioenergetics adaptations and redox homeostasis in pregnancy and related disorders. Mol Cell Biochem. 2021;476(11):4003–4018. doi: 10.1007/s11010-021-04215-0
  28. Wang X, Khatri S, Broaddus R, et al. Deletion of arid1a in reproductive tract mesenchymal cells reduces fertility in female mice. Biol Reprod. 2016;94(4):93. doi: 10.1095/biolreprod.115.133637
  29. Jin M, Xu S, Li J, et al. Role of ARID1A in the regulation of human trophoblast migration and invasion. Reprod Sci. 2022;29(8):2363–2373. doi: 10.1007/s43032-021-00686-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. ARID1A protein expression in terminal and intermediate chorionic villi: a, control group; b, chronic placental insufficiency. Immunohistochemical study, ×200

Download (360KB)
3. Fig. 2. Hypoplastic chronic placental insufficiency: a, hypoplasia of terminal and intermediate chorionic villi (hematoxylin and eosin staining, ×100); b, ARID1А protein expression in chorionic villi (immunohistochemical study, ×200)

Download (427KB)
4. Fig. 3. Dissociated chronic placental insufficiency: a, intermediate chorionic villi with moderate blood filling of the vascular bed (hematoxylin and eosin staining, ×200); b, ARID1A protein expression in chorionic villi (immunohistochemical study, ×400)

Download (437KB)

Copyright (c) 2024 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies