Changes in cerebral hemodynamics after week 32 of gestation in fetuses with late-onset fetal growth restriction

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

BACKGROUND: Late-onset fetal growth restriction is characterized by changes in fetal cerebral hemodynamic patterns. Blood flow parameters in the anterior, middle, and posterior cerebral arteries have been studied previously, and there was shown a relationship between changes in certain cerebral artery vascular resistance parameters and increased risk of adverse perinatal outcomes such as fetal hypoxia in labor, cesarean section, and stillbirth.

AIM: The aim of this study was to search for cerebral hemodynamic patterns in fetuses with late-onset fetal growth restriction after week 32 of gestation.

MATERIALS AND METHODS: This prospective study included 110 pregnant women at week 32 or more of gestation who underwent fetal ultrasound (fetometry and Doppler with additional measurement of vascular resistance parameters in the anterior and posterior cerebral arteries). Ultrasound findings were assessed for the presence of late-onset fetal growth restriction. The systole-diastolic ratio, resistance index, and pulsatility index were evaluated in appropriate-for-gestational-age fetuses and in fetuses with late-onset fetal growth restriction.

RESULTS: A total of 128 middle, 86 anterior, and 87 posterior cerebral arteries measurements were included in the calculations. From weeks 32–33 to preterm gestation in appropriate-for-gestational-age fetuses, a decrease in the middle cerebral artery parameters was observed, while in the anterior and posterior cerebral arteries, the vascular resistance parameters remained at the same level or slightly increased. A nonlinear trend of blood flow changes in the anterior and posterior cerebral arteries was observed in fetuses with fetal growth restriction — the values increased by weeks 34–36 of gestation and decreased in preterm gestation. At the same time, differences (р < 0.05) were found between the median values of the systolic-diastolic ratio, resistance index and pulsatility index in the anterior and posterior cerebral arteries at weeks 34–36 and those at preterm gestation.

CONCLUSIONS: Changes in fetal cerebral hemodynamics in fetal growth restriction, in particular, a shift in the peak values of vascular resistance parameters to later gestational periods may be associated with changes in the development of integrative functions of the central nervous system and neurovascular development of the fetal brain (cortex), which occurs predominantly in the third trimester of pregnancy.

全文:

受限制的访问

作者简介

Sofia Yusenko

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Russian Research Institute of Health

编辑信件的主要联系方式.
Email: iusenko.sr@gmail.com
ORCID iD: 0000-0001-7316-8179
俄罗斯联邦, Saint Petersburg; Moscow

Stanislava Nagorneva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: stanislava_n@bk.ru
ORCID iD: 0000-0003-0402-5304
SPIN 代码: 5109-7613

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Igor Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Saint Petersburg State University

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN 代码: 6572-6450

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Lees CC, Stampalija T, Baschat A, et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(2):298–312. doi: 10.1002/uog.22134
  2. Russian Society of Obstetricians and Gynecologists. Insufficient fetal growth requiring maternal medical care (fetal growth restriction). Clinical recommendations. 2022. (In Russ.) [cited 2024 March 19] Available from: https://cr.minzdrav.gov.ru/recomend/722
  3. Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–339. doi: 10.1002/uog.15884
  4. Bhide A, Acharya G, Baschat A, et al. ISUOG Practice Guidelines (updated): use of Doppler velocimetry in obstetrics. Ultrasound Obstet Gynecol. 2021;58(2):331–339. doi: 10.1002/uog.23698
  5. Nagorneva SV, Kogan IYu, Yusenko SR, et al. Evolution of understanding the role of fetal dopplerometry. Women’s health and reproduction. 2022;54(3). (In Russ.) EDN: QUAQOP
  6. Rizzo G, Mappa I, Bitsadze V, et al. Role of Doppler ultrasound at time of diagnosis of late-onset fetal growth restriction in predicting adverse perinatal outcome: prospective cohort study. Ultrasound Obstet Gynecol. 2020;55(6):793–798. doi: 10.1002/uog.20406
  7. Figueras F, Caradeux J, Crispi F, et al. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S790–S802.e1. doi: 10.1016/j.ajog.2017.12.003
  8. Malhotra A, Allison BJ, Castillo-Melendez M, et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55. doi: 10.3389/fendo.2019.00055
  9. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594(4):807–823. doi: 10.1113/JP271402
  10. Stevenson NJ, Lai MM, Starkman HE, et al. Electroencephalographic studies in growth-restricted and small-for-gestational-age neonates. Pediatr Res. 2022;92(6):1527–1534. doi: 10.1038/s41390-022-01992-2
  11. Mari G. Regional cerebral flow velocity waveforms in the human fetus. J Ultrasound Med. 1994;13(5):343–346. doi: 10.7863/jum.1994.13.5.343
  12. Ebbing C, Rasmussen S, Kiserud T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet Gynecol. 2007;30(3):287–296. doi: 10.1002/uog.4088
  13. Morales-Roselló J, Khalil A, Morlando M, et al. Doppler reference values of the fetal vertebral and middle cerebral arteries, at 19–41 weeks gestation. J Matern Fetal Neonatal Med. 2015;28(3):338–343. doi: 10.3109/14767058.2014.916680
  14. Ciobanu A, Wright A, Syngelaki A, et al. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet Gynecol. 2019;53(4):465–472. doi: 10.1002/uog.20157
  15. Dubiel M, Gunnarsson GO, Gudmundsson S. Blood redistribution in the fetal brain during chronic hypoxia. Ultrasound Obstet Gynecol. 2002;20(2):117–121. doi: 10.1046/j.1469-0705.2002.00758.x
  16. Figueroa-Diesel H, Hernandez-Andrade E, Acosta-Rojas R, et al. Doppler changes in the main fetal brain arteries at different stages of hemodynamic adaptation in severe intrauterine growth restriction. Ultrasound Obstet Gynecol. 2007;30(3):297–302. doi: 10.1002/uog.4084
  17. Benavides-Serralde JA, Hernández-Andrade E, Figueroa-Diesel H, et al. Reference values for Doppler parameters of the fetal anterior cerebral artery throughout gestation. Gynecol Obstet Invest. 2010;69(1):33–39. doi: 10.1159/000253847
  18. Benavides-Serralde JA, Hernandez-Andrade E, Cruz-Martinez R, et al. Doppler evaluation of the posterior cerebral artery in normally grown and growth restricted fetuses. Prenat Diagn. 2014;34(2):115–120. doi: 10.1002/pd.4265
  19. Rosati P, Buongiorno S, Salvi S, et al. Reference values for pulsatility index of fetal anterior and posterior cerebral arteries in prolonged pregnancy. J Clin Ultrasound. 2021;49(3):199–204. doi: 10.1002/jcu.22979
  20. Steller JG, Gumina D, Driver C, et al. Patterns of brain sparing in a fetal growth restriction cohort. J Clin Med. 2022;11(15):4480. doi: 10.3390/jcm11154480
  21. Pooh RK, Pooh KH. Fetal neuroimaging. Fetal Matern Med Rev. 2008;19(1):1–31. doi: 10.1017/S0965539508002106
  22. Wright R, Makropoulos A, Kyriakopoulou V, et al. Construction of a fetal spatio-temporal cortical surface atlas from in utero MRI: application of spectral surface matching. Neuroimage. 2015;120:467–480. doi: 10.1016/j.neuroimage.2015.05.087
  23. Wright R, Kyriakopoulou V, Ledig C, et al. Automatic quantification of normal cortical folding patterns from fetal brain MRI. Neuroimage. 2014;91:21–32. doi: 10.1016/j.neuroimage.2014.01.034
  24. Akhmetshina DR, Valeeva GR, Kolonneze M, et al. Brain activity at embryonic stages of development. Scientific notes of Kazan University. Series Natural Sciences. 2015;157(2):5–34. (In Russ.) EDN: UFZJZF
  25. Polyanin AA, Kogan IYu. Venous circulation of the fetus during normal and complicated pregnancy. St. Petersburg: Petrovsky Fund; 2002. (In Russ.)
  26. Yusenko SR, Nagorneva SV, Kogan IY. Patterns of development and formation of the fetal central nervous system integrative function in the antenatal period. Journal of Obstetrics and Women’s Diseases. 2022;71(5):97–110. doi: 10.17816/JOWD107183
  27. Salomon LJ, Alfirevic Z, Berghella V, et al. ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan [published correction appears in Ultrasound Obstet Gynecol. 2022 Oct;60(4):591]. Ultrasound Obstet Gynecol. 2022;59(6):840–856. doi: 10.1002/uog.24888
  28. Oros D, Figueras F, Cruz-Martinez R, et al. Middle versus anterior cerebral artery Doppler for the prediction of perinatal outcome and neonatal neurobehavior in term small-for-gestational-age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2010;35(4):456–461. doi: 10.1002/uog.7588
  29. Rhee CJ, da Costa CS, Austin T, et al. Neonatal cerebrovascular autoregulation. Pediatr Res. 2018;84(5):602–610. doi: 10.1038/s41390-018-0141-6
  30. Leon RL, Ortigoza EB, Ali N, et al. Cerebral blood flow monitoring in high-risk fetal and neonatal populations. Front Pediatr. 2022;9. doi: 10.3389/fped.2021.748345
  31. Pryds O, Edwards AD. Cerebral blood flow in the newborn infant. Arch Dis Child Fetal Neonatal Ed. 1996;74(1):F63–F69. doi: 10.1136/fn.74.1.f63
  32. Kuzawa CW, Chugani HT, Grossman LI, et al. Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci USA. 2014;111(36):13010–13015. doi: 10.1073/pnas.1323099111
  33. Chiron C, Raynaud C, Mazière B, et al. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33(5):696–703.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution of 50th percentile (median) values of the pulsatility index in the middle [14], posterior [18], and anterior [17] cerebral arteries in the appropriate-for-gestational-age group of fetuses. PCA, posterior cerebral artery; ACA, anterior cerebral artery; MCA, middle cerebral artery

下载 (129KB)
3. Fig. 2. Schematic representation of the methodology for assessing blood flow in the circle of Willis (posterior, middle and anterior cerebral arteries). The sample volume placements are indicated when performing a Doppler study. PCA, posterior cerebral artery; ACA, anterior cerebral artery; MCA, middle cerebral artery

下载 (188KB)

版权所有 © Eсо-Vector, 2024

许可 URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.