Changes in cerebral hemodynamics after week 32 of gestation in fetuses with late-onset fetal growth restriction
- 作者: Yusenko S.R.1,2, Nagorneva S.V.1, Kogan I.Y.1,3
-
隶属关系:
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- Russian Research Institute of Health
- Saint Petersburg State University
- 期: 卷 73, 编号 3 (2024)
- 页面: 105-114
- 栏目: Original study articles
- ##submission.dateSubmitted##: 20.03.2024
- ##submission.dateAccepted##: 19.04.2024
- ##submission.datePublished##: 17.07.2024
- URL: https://journals.eco-vector.com/jowd/article/view/629299
- DOI: https://doi.org/10.17816/JOWD629299
- ID: 629299
如何引用文章
详细
BACKGROUND: Late-onset fetal growth restriction is characterized by changes in fetal cerebral hemodynamic patterns. Blood flow parameters in the anterior, middle, and posterior cerebral arteries have been studied previously, and there was shown a relationship between changes in certain cerebral artery vascular resistance parameters and increased risk of adverse perinatal outcomes such as fetal hypoxia in labor, cesarean section, and stillbirth.
AIM: The aim of this study was to search for cerebral hemodynamic patterns in fetuses with late-onset fetal growth restriction after week 32 of gestation.
MATERIALS AND METHODS: This prospective study included 110 pregnant women at week 32 or more of gestation who underwent fetal ultrasound (fetometry and Doppler with additional measurement of vascular resistance parameters in the anterior and posterior cerebral arteries). Ultrasound findings were assessed for the presence of late-onset fetal growth restriction. The systole-diastolic ratio, resistance index, and pulsatility index were evaluated in appropriate-for-gestational-age fetuses and in fetuses with late-onset fetal growth restriction.
RESULTS: A total of 128 middle, 86 anterior, and 87 posterior cerebral arteries measurements were included in the calculations. From weeks 32–33 to preterm gestation in appropriate-for-gestational-age fetuses, a decrease in the middle cerebral artery parameters was observed, while in the anterior and posterior cerebral arteries, the vascular resistance parameters remained at the same level or slightly increased. A nonlinear trend of blood flow changes in the anterior and posterior cerebral arteries was observed in fetuses with fetal growth restriction — the values increased by weeks 34–36 of gestation and decreased in preterm gestation. At the same time, differences (р < 0.05) were found between the median values of the systolic-diastolic ratio, resistance index and pulsatility index in the anterior and posterior cerebral arteries at weeks 34–36 and those at preterm gestation.
CONCLUSIONS: Changes in fetal cerebral hemodynamics in fetal growth restriction, in particular, a shift in the peak values of vascular resistance parameters to later gestational periods may be associated with changes in the development of integrative functions of the central nervous system and neurovascular development of the fetal brain (cortex), which occurs predominantly in the third trimester of pregnancy.
全文:

作者简介
Sofia Yusenko
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Russian Research Institute of Health
编辑信件的主要联系方式.
Email: iusenko.sr@gmail.com
ORCID iD: 0000-0001-7316-8179
俄罗斯联邦, Saint Petersburg; Moscow
Stanislava Nagorneva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: stanislava_n@bk.ru
ORCID iD: 0000-0003-0402-5304
SPIN 代码: 5109-7613
MD, Cand. Sci. (Med.)
俄罗斯联邦, Saint PetersburgIgor Kogan
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Saint Petersburg State University
Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN 代码: 6572-6450
MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences
俄罗斯联邦, Saint Petersburg; Saint Petersburg参考
- Lees CC, Stampalija T, Baschat A, et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(2):298–312. doi: 10.1002/uog.22134
- Russian Society of Obstetricians and Gynecologists. Insufficient fetal growth requiring maternal medical care (fetal growth restriction). Clinical recommendations. 2022. (In Russ.) [cited 2024 March 19] Available from: https://cr.minzdrav.gov.ru/recomend/722
- Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–339. doi: 10.1002/uog.15884
- Bhide A, Acharya G, Baschat A, et al. ISUOG Practice Guidelines (updated): use of Doppler velocimetry in obstetrics. Ultrasound Obstet Gynecol. 2021;58(2):331–339. doi: 10.1002/uog.23698
- Nagorneva SV, Kogan IYu, Yusenko SR, et al. Evolution of understanding the role of fetal dopplerometry. Women’s health and reproduction. 2022;54(3). (In Russ.) EDN: QUAQOP
- Rizzo G, Mappa I, Bitsadze V, et al. Role of Doppler ultrasound at time of diagnosis of late-onset fetal growth restriction in predicting adverse perinatal outcome: prospective cohort study. Ultrasound Obstet Gynecol. 2020;55(6):793–798. doi: 10.1002/uog.20406
- Figueras F, Caradeux J, Crispi F, et al. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S790–S802.e1. doi: 10.1016/j.ajog.2017.12.003
- Malhotra A, Allison BJ, Castillo-Melendez M, et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55. doi: 10.3389/fendo.2019.00055
- Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594(4):807–823. doi: 10.1113/JP271402
- Stevenson NJ, Lai MM, Starkman HE, et al. Electroencephalographic studies in growth-restricted and small-for-gestational-age neonates. Pediatr Res. 2022;92(6):1527–1534. doi: 10.1038/s41390-022-01992-2
- Mari G. Regional cerebral flow velocity waveforms in the human fetus. J Ultrasound Med. 1994;13(5):343–346. doi: 10.7863/jum.1994.13.5.343
- Ebbing C, Rasmussen S, Kiserud T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet Gynecol. 2007;30(3):287–296. doi: 10.1002/uog.4088
- Morales-Roselló J, Khalil A, Morlando M, et al. Doppler reference values of the fetal vertebral and middle cerebral arteries, at 19–41 weeks gestation. J Matern Fetal Neonatal Med. 2015;28(3):338–343. doi: 10.3109/14767058.2014.916680
- Ciobanu A, Wright A, Syngelaki A, et al. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet Gynecol. 2019;53(4):465–472. doi: 10.1002/uog.20157
- Dubiel M, Gunnarsson GO, Gudmundsson S. Blood redistribution in the fetal brain during chronic hypoxia. Ultrasound Obstet Gynecol. 2002;20(2):117–121. doi: 10.1046/j.1469-0705.2002.00758.x
- Figueroa-Diesel H, Hernandez-Andrade E, Acosta-Rojas R, et al. Doppler changes in the main fetal brain arteries at different stages of hemodynamic adaptation in severe intrauterine growth restriction. Ultrasound Obstet Gynecol. 2007;30(3):297–302. doi: 10.1002/uog.4084
- Benavides-Serralde JA, Hernández-Andrade E, Figueroa-Diesel H, et al. Reference values for Doppler parameters of the fetal anterior cerebral artery throughout gestation. Gynecol Obstet Invest. 2010;69(1):33–39. doi: 10.1159/000253847
- Benavides-Serralde JA, Hernandez-Andrade E, Cruz-Martinez R, et al. Doppler evaluation of the posterior cerebral artery in normally grown and growth restricted fetuses. Prenat Diagn. 2014;34(2):115–120. doi: 10.1002/pd.4265
- Rosati P, Buongiorno S, Salvi S, et al. Reference values for pulsatility index of fetal anterior and posterior cerebral arteries in prolonged pregnancy. J Clin Ultrasound. 2021;49(3):199–204. doi: 10.1002/jcu.22979
- Steller JG, Gumina D, Driver C, et al. Patterns of brain sparing in a fetal growth restriction cohort. J Clin Med. 2022;11(15):4480. doi: 10.3390/jcm11154480
- Pooh RK, Pooh KH. Fetal neuroimaging. Fetal Matern Med Rev. 2008;19(1):1–31. doi: 10.1017/S0965539508002106
- Wright R, Makropoulos A, Kyriakopoulou V, et al. Construction of a fetal spatio-temporal cortical surface atlas from in utero MRI: application of spectral surface matching. Neuroimage. 2015;120:467–480. doi: 10.1016/j.neuroimage.2015.05.087
- Wright R, Kyriakopoulou V, Ledig C, et al. Automatic quantification of normal cortical folding patterns from fetal brain MRI. Neuroimage. 2014;91:21–32. doi: 10.1016/j.neuroimage.2014.01.034
- Akhmetshina DR, Valeeva GR, Kolonneze M, et al. Brain activity at embryonic stages of development. Scientific notes of Kazan University. Series Natural Sciences. 2015;157(2):5–34. (In Russ.) EDN: UFZJZF
- Polyanin AA, Kogan IYu. Venous circulation of the fetus during normal and complicated pregnancy. St. Petersburg: Petrovsky Fund; 2002. (In Russ.)
- Yusenko SR, Nagorneva SV, Kogan IY. Patterns of development and formation of the fetal central nervous system integrative function in the antenatal period. Journal of Obstetrics and Women’s Diseases. 2022;71(5):97–110. doi: 10.17816/JOWD107183
- Salomon LJ, Alfirevic Z, Berghella V, et al. ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan [published correction appears in Ultrasound Obstet Gynecol. 2022 Oct;60(4):591]. Ultrasound Obstet Gynecol. 2022;59(6):840–856. doi: 10.1002/uog.24888
- Oros D, Figueras F, Cruz-Martinez R, et al. Middle versus anterior cerebral artery Doppler for the prediction of perinatal outcome and neonatal neurobehavior in term small-for-gestational-age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2010;35(4):456–461. doi: 10.1002/uog.7588
- Rhee CJ, da Costa CS, Austin T, et al. Neonatal cerebrovascular autoregulation. Pediatr Res. 2018;84(5):602–610. doi: 10.1038/s41390-018-0141-6
- Leon RL, Ortigoza EB, Ali N, et al. Cerebral blood flow monitoring in high-risk fetal and neonatal populations. Front Pediatr. 2022;9. doi: 10.3389/fped.2021.748345
- Pryds O, Edwards AD. Cerebral blood flow in the newborn infant. Arch Dis Child Fetal Neonatal Ed. 1996;74(1):F63–F69. doi: 10.1136/fn.74.1.f63
- Kuzawa CW, Chugani HT, Grossman LI, et al. Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci USA. 2014;111(36):13010–13015. doi: 10.1073/pnas.1323099111
- Chiron C, Raynaud C, Mazière B, et al. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33(5):696–703.
补充文件
