Serum cytokine profile in women with type 1 diabetes mellitus in the III trimester of pregnancy and in their newborns

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background: Chronic hyperglycemia and abnormal glucose variability are established risk factors for perinatal complications. Abnormal fetal growth and diabetic fetopathy can be associated not only with carbohydrate metabolism disorders, but also with impaired production of cytokines, chemokines, and growth factors that regulate intercellular interactions.

Aim: The aim of this study was to evaluate cytokine and growth factor levels in the blood serum of pregnant women with type 1 diabetes mellitus and in umbilical cord blood of their neonates, as well as assessing the associations of these levels with the development of fetal macrosomia and diabetic fetopathy.

Materials and methods: This prospective study included 88 women with a singleton pregnancy and cesarean delivery. All the patients provided informed consent for participation. The study groups comprised individuals with type 1 diabetes mellitus (n = 32) and non-impaired glucose tolerance (n = 56). The levels of interferons alfa 2 and gamma, monokine induced by interferon-gamma, interleukin-1α, -1β, -2, -3, -4, -5, -6, -7, -8, -9, -10, -13, -15, -16, -17, -18, interleukin-1 receptor antagonist, interleukin-2 receptor alpha subunits, p40 and p70 subunits of interleukin-12, monocyte chemotactic protein-1, -3, macrophage inflammatory protein-1α, -1β, leukemia inhibitory factor, macrophage ingibitory factor, nerve growth factor beta, stem cell factor, cutaneous T-cell-attracting chemokine, growth-regulated oncogene alpha, hepatocyte growth factor, stem cell growth factor beta, stromal cell-derived factor-1 alfa, interferon gamma inducible protein 10, platelet-derived growth factor-bb, vascular endothelial growth factor, basic fibroblast growth factor, eotaxin, chemokine ligand 5, and macrophage, granulocyte, and granulocyte/macrophage colony-stimulating factors, tumor necrosis factor alfa and beta, and tumor necrosis factor-related apoptosis-inducing ligand were measured with multiplex immunoassay in the blood serum of women at 36–40 weeks of gestation and in the umbilical cord blood serum of their neonates.

Results: Cytokine levels varied widely in the both study groups. Women with type 1 diabetes mellitus had higher levels of interleukin-1β, -6, -17, basic fibroblast growth factor, macrophage inflammatory protein-1α, -1β, and lower levels of interleukin-1ra compared to the control group. Their neonates had higher levels of interleukin-6, -8, granulocyte colony-stimulating factor, macrophage inflammatory protein-1α, -1β. Higher levels of interleukin-1β, -6, -17, and basic fibroblast growth factor in the blood serum of the women were associated with time in range less than 70% and the development of diabetic fetopathy. Time in range was inversely associated with the interferon gamma / interleukin-5 (ρ = −0.531; p = 0.013), interferon gamma / interleukin-10 (ρ = −0.441; p = 0.045), interleukin-2 / -10 (ρ = −0.473; p = 0.030), interleukin-1β / -10 (ρ = −0.561; p = 0.008), interleukin-1β / -1ra (ρ = −0.635; p = 0.002), and interleukin-6 / -10 (ρ = −0.540; p = 0.012) ratios.

Conclusions: Cytokine profile alterations were the most pronounced in pregnant women with non-target time in range values and in those with diabetic fetopathy development. Serum cytokine levels correlate with glycemic profile parameters but are considered non-specific markers of pregnancy complications.

全文:

受限制的访问

作者简介

Elena Alekseenkova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

编辑信件的主要联系方式.
Email: ealekseva@gmail.com
ORCID iD: 0000-0002-0642-7924
SPIN 代码: 3976-2540

MD

俄罗斯联邦, Saint Petersburg

Ekaterina Kopteeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN 代码: 9421-6407

MD

俄罗斯联邦, Saint Petersburg

Alena Tiselko

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: alenadoc@mail.ru
ORCID iD: 0000-0002-2512-833X
SPIN 代码: 5644-9891

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Sergey Selkov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: selkovsa@mail.ru
ORCID iD: 0000-0003-1560-7529
SPIN 代码: 7665-0594

MD, Dr. Sci. (Medicine), Professor, Honored Scientist of the Russian Federation

俄罗斯联邦, Saint Petersburg

Roman Kapustin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN 代码: 7300-6260

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Igor Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN 代码: 6572-6450
Scopus 作者 ID: 56895765600
Researcher ID: P-4357-2017

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

俄罗斯联邦, Saint Petersburg

参考

  1. Sokolov DI, Stepanova OI, Selkov SA. The role of the different subpopulations of CD4+Т lymphocytes during pregnancy. Medical Immunology (Russia). 2016;18(6):521–536. EDN: XDZCXX doi: 10.15789/1563-0625-2016-6-521-536
  2. Veenstra van Nieuwenhoven AL. The immunology of successful pregnancy. Hum Reprod Update. 2003;9(4):347–357. doi: 10.1093/humupd/dmg026
  3. Selkov SA, Sokolov DI. Immunologic control of placenta development. Journal of Obstetrics and Women’s Diseases. 2010;59(1):6–10. EDN: NEAVZL
  4. Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2):S844–S866. doi: 10.1016/j.ajog.2021.11.1356
  5. Guan X, Fu Y, Liu Y, et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis. Front Immunol. 2023;14:1156039. doi: 10.3389/fimmu.2023.1156039
  6. Makarkov AI, Buianova SN, Ivanova OG, et al. The specific features of T-cell immunoregulation in miscarriage: paradigm evolution. Russian Bulletin of Obstetrician-Gynecologist. 2012;12(5):10–16. EDN: NXZCFR
  7. Groen B, van der Wijk AE, van den Berg PP, et al. Immunological Adaptations to Pregnancy in Women with Type 1 Diabetes. Sci Rep. 2015;5(1):13618. doi: 10.1038/srep13618
  8. Kapustin RV, Arzhanova ON, Tiselko AV. Oxidative stress in pregnant women with diabetes mellitus. Diabetes mellitus. 2017;20(6):461–471. EDN: YOQQFO doi: 10.14341/DM8669
  9. Grigoryan OR, Absatarova YuS, Mikheev RK, et al. Comparative morphofunctional analysis of the state of fetoplacental complex in diabetes mellitus (literature review). Problems of Endocrinology. 2020;66(2):85–92. EDN: TFAZQG doi: 10.14341/probl12399
  10. Kapustin RV, Onopriychuk AR, Arzhanova ON, et al. Pathophysiology of placenta and fetus in diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2018;67(6):79–92. EDN: YVNRPN doi: 10.17816/JOWD67679-92
  11. Scott EM, Feig DS, Murphy HR, et al. Continuous glucose monitoring in pregnancy: importance of analyzing temporal profiles to understand clinical outcomes. Diabetes Care. 2020;43(6):1178–1184. doi: 10.2337/dc19-2527
  12. Tiselko AV, Yarmolinskaya MI, Misharina EV, et al. Evaluation of glycaemic profile variability as a basis for insulin therapy strategy in pregnant women with type 1 diabetes. Diabetes Mellitus. 2019;22(6):526–535. EDN: ATYQMJ doi: 10.14341/DM10214
  13. Klimontov VV, Mavlianova KR, Orlov NB, et al. Serum cytokines and growth factors in subjects with type 1 diabetes: associations with time in ranges and glucose variability. Biomedicines. 2023;11(10):2843. doi: 10.3390/biomedicines11102843
  14. Tiselko AV, Misharina EV, Yarmolinskaya MI, et al. Evaluation of folliculogenesis and oxidative stress parameters in type 1 diabetes mellitus women with different glycemic profiles. Endocrine. 2024;85(3):1131–1140. doi: 10.1007/s12020-024-03805-4
  15. Villar J, Papageorghiou AT, Pang R, et al. The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21st project: the fetal growth longitudinal study and newborn cross-sectional study. Lancet Diabetes Endocrinol. 2014;2(10):781–792. doi: 10.1016/S2213-8587(14)70121-4
  16. Dogan Y, Akarsu S, Ustundag B, et al. Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediators Inflamm. 2006;2006(1):1–6. doi: 10.1155/MI/2006/59206
  17. Fatima N, Faisal SM, Zubair S, et al. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: correlation with age and glycemic condition in diabetic human subjects. PLoS One. 2016;11(8):e0161548. doi: 10.1371/journal.pone.0161548
  18. Andrade Lima Gabbay M, Sato MN, Duarte AJS, et al. Serum titres of anti-glutamic acid decarboxylase-65 and anti-IA-2 autoantibodies are associated with different immunoregulatory milieu in newly diagnosed type 1 diabetes patients. Clin Exp Immunol. 2012;168(1):60–67. doi: 10.1111/j.1365-2249.2011.04538.x
  19. Chen YL, Qiao YC, Pan YH, et al. Correlation between serum interleukin-6 level and type 1 diabetes mellitus: a systematic review and meta-analysis. Cytokine. 2017;94:14–20. doi: 10.1016/j.cyto.2017.01.002
  20. Li J, Xu L, Zhao W, et al. Serum IL-17A concentration and a IL17RA single nucleotide polymorphism contribute to the risk of autoimmune type 1 diabetes. Diabetes Metab Res Rev. 2022;38(6). doi: 10.1002/dmrr.3547
  21. Purohit S, Sharma A, Hopkins D, et al. Large-scale discovery and validation studies demonstrate significant reductions in circulating levels of IL8, IL-1Ra, MCP-1, and MIP-1β in patients with type 1 diabetes. J Clin Endocrinol Metab. 2015;100(9):E1179–E1187. doi: 10.1210/JC.2015-1388
  22. Pan X, Kaminga AC, Kinra S, et al. Chemokines in type 1 diabetes mellitus. Front Immunol. 2022;12:690082. doi: 10.3389/fimmu.2021.690082
  23. Krukier II, Avrutskaya VV, Smolyaninov GV, et al. Dynamics of cytokines in the serum and placenta in pregnant women with diabetes mellitus. Tauride Medical and Biological Herald. 2017;20(2):63–67. EDN: ZFIYED (In Russ.)
  24. Krukier II, Avrutskaya VV, Grigoriants AA, et al. Placental and serum production of cytokines and relaxin in pregnant women with diabetes mellitus. Medical Alphabet. 2019;3(25):43–45. EDN: GXLSJS doi: 10.33667/2078-5631-2019-3-25(400)-43-45
  25. Radaelli T, Uvena-Celebrezze J, Minium J, et al. Maternal interleukin-6: marker of fetal growth and adiposity. J Soc Gynecol Investig. 2006;13(1):53–57. doi: 10.1016/j.jsgi.2005.10.003
  26. Keenan-Devlin LS, Caplan M, Freedman A, et al. Using principal component analysis to examine associations of early pregnancy inflammatory biomarker profiles and adverse birth outcomes. Am J Reprod Immunol. 2021;86(6):e13497. doi: 10.1111/aji.13497
  27. Žák P, Souček M. Correlation of Tumor necrosis factor alpha, interleukin 6 and interleukin 10 with blood pressure, risk of preeclampsia and low birth weight in gestational diabetes. Physiol Res. 2019;68(3):395–408. doi: 10.33549/physiolres.934002
  28. Ragsdale HB, Kuzawa CW, Borja JB, et al. Regulation of inflammation during gestation and birth outcomes: Inflammatory cytokine balance predicts birth weight and length. Am J Hum Biol. 2019;31(3):e23245. doi: 10.1002/ajhb.23245
  29. Francis EC, Li M, Hinkle SN, et al. Maternal proinflammatory adipokines throughout pregnancy and neonatal size and body composition: a prospective study. Curr Dev Nutr. 2021;5(10):nzab113. doi: 10.1093/cdn/nzab113

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Serum cytokine and growth factor levels in pregnant women (a) and their neonates (b): median difference when comparing type 1 diabetes mellitus patients with healthy individuals. Median differences of ln-transformed variables are shown with 95 % confidence interval. Data are scaled using the total sample interquartile range. Levels of significance for comparing two independent groups are provided. Significant differences are shown in red. Data markers set to the right (above zero) represent higher levels in the type 1 diabetes mellitus group, and to the left, higher levels in the control group. Abbreviations in Figures 1–4 and Tables 1–2 are disclosed in the Materials and Methods section

下载 (369KB)
3. Fig. 2. Serum cytokine and growth factor levels in pregnant women (a) and their neonates (b): median difference when comparing type 1 diabetes mellitus patients with time in range less than 70 % with healthy individuals. Median differences of ln-transformed variables are shown with 95 % confidence interval. Data are scaled using the total sample interquartile range. Levels of significance for post-hoc pairwise comparisons when conducting ANOVA are provided. Significant differences are shown in red. Data markers set to the right (above zero) represent higher levels in the time in range more than 70 %, and to the left, higher levels in the control group

下载 (339KB)
4. Fig. 3. Serum cytokine and growth factor levels in pregnant women (a) and their neonates (b): median difference when comparing the diabetic fetopathy group with type 1 diabetes mellitus in the mother with healthy individuals. Median differences of ln-transformed variables are shown with 95 % confidence interval. Data are scaled using the total sample interquartile range. Levels of significance for post-hoc pairwise comparisons when conducting ANOVA are provided. Significant differences are shown in red. Data markers set to the right (above zero) represent higher levels in the diabetic fetopathy group, and to the left, higher levels in the control group

下载 (344KB)
5. Fig. 4. Ratios of serum cytokine and growth factor levels in pregnant women (a) and their neonates (b): median difference when comparing type 1 diabetes mellitus patients with healthy individuals. Median differences of ln-transformed variables are shown with 95 % confidence interval. Data are scaled using the total sample interquartile range. Levels of significance for comparing two independent groups are provided. Significant differences are shown in red. Data markers set to the right (above zero) represent higher levels in the type 1 diabetes mellitus group, and to the left, higher levels in the control group

下载 (230KB)
6. Appendix 1. Serum cytokine and growth factor levels in pregnant women with type 1 diabetes mellitus and healthy individuals
下载 (111KB)
7. Appendix 2. Cytokine and growth factor levels in the umbilical cord blood serum of neonates of mothers with type 1 diabetes mellitus and healthy individuals
下载 (108KB)
8. Appendix 3. Serum cytokine and growth factor levels in patients with type 1 diabetes mellitus depending on their achievement of time in range values of more than 70 % and in healthy individuals
下载 (133KB)
9. Appendix 4. Cytokine and growth factor levels in the umbilical cord blood serum depending on the mothers’ achievement of time in range values of more than 70 % in the presence of type 1 diabetes mellitus and in healthy individuals
下载 (134KB)

版权所有 © Eсо-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.