Markers of brain damage in full-term newborns with intrauterine growth retardation

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The increase in the number of newborns with intrauterine growth retardation, who are characterized not only by high perinatal morbidity and mortality, but also by neurodevelopmental disorders in later life, has determined a wide search for diagnostic markers of prenatal hypoxia for a timely objective assessment of brain damage and a justification of neuroprotection methods. This article presents literature data on biomarkers and methods of instrumental diagnosis of brain damage that have received evidence of the effectiveness of their use in early neonatal life of newborns with intrauterine growth retardation. It is emphasized that such biomarkers as S100B, NSE, and BDNF proteins are the most reliable and easy to determine non-invasively. However, for their wide application in clinical practice, it is necessary to establish reference values in umbilical cord blood and urine, while taking into account the gestational age, sex, and method of giving birth, and to unify the use of laboratory analysis systems and diagnostic tests for this purpose. The comparison of biomarker indicators with cerebral oximetry, electroencephalogram and magnetic resonance imaging data will allow for developing new approaches to the treatment of perinatal pathology and, largely, preventing adverse consequences in those born with intrauterine growth retardation.

Full Text

Restricted Access

About the authors

Inna I. Evsyukova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198
SPIN-code: 4444-4567

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

References

  1. Malhotra A, Allison BJ, Castillo-Melendez M, et al. Neonatal morbidities of fetal growth restriction: Pathophysiology and impact. Front Endocrinol (Lausanne). 2019;10:55. doi: 10.3389/fendo.2019.00055
  2. Wang Y, Fu W, Liu J. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. J Matern Fetal Neonatal Med. 2016;29(4):660−668. doi: 10.3109/14767058.2015.1015417
  3. Armengaud JB, Yzydorczyk C, Siddeek B, et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod Toxicol. 2021;99:168−176. doi: 10.1016/j.reprotox.2020.10.005
  4. Dall’Asta A, Brunelli V, Prefumo F. Early onset fetal growth restriction. Matern Health Neonatol Perinatol. 2017;3:2. doi: 10.1186/s40748-016-0041-x
  5. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016;10:67–83. doi: 10.4137/CMPed.S40070
  6. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594(4):807–823. doi: 10.1113/JP271402
  7. Hartkopf J, Schleger F, Keune J, et al. Impact of intrauterine growth restriction on cognitive and motor development at 2 years of age. Front Physiol. 2018;9:1278. doi: 10.3389/fphys.2018.01278
  8. Sacchi C, Marino C, Nosarti C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic review and meta-analysis. JAMA Pediatr. 2020;174(8):772−781. doi: 10.1001/jamapediatrics.2020.1097
  9. Korkalainen N, Partanen L, Rasanen L, et al. Fetal hemodynamics and language skills in primary school-aged children with fetal growth restriction: A longitudinal study. Early Hum Dev. 2019;134:34−40. doi: 10.1016/j.earlhumdev.2019.05.019
  10. Pels A, Knaven OC, Wijnberg-Williams BJ, et al. Neurodevelopmental outcomes at five years after early-onset fetal growth restriction: Analyses in a Dutch subgroup participating in a European management trial. Eur J Obstet Gynecol Reprod Biol. 2019;234:63−70. doi: 10.1016/j.ejogrb.2018.12.041
  11. Vollmer B, Edmonds CJ. School age neurological and cognitive outcomes of fetal growth retardation or small for gestational age birth weight. Front Endocrinol (Lausanne). 2019;10:186. doi: 10.3389/fendo.2019.00186
  12. Arcangelli T, Thilaganathan B, Hooper R, et al. Neurodevelopmental delay in small babies at term: a systematic review. Ultrasound Obstet Gynecol. 2012;40(3):267−275. doi: 10.1002/uog.11112.
  13. Batalle D, Munoz-Moreno E, Arbat-Plana A. Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction. Neuroimage. 2014;100:24−38. doi: 10.1016/j.neuroimage.2014.05.065
  14. Hsiao EY, Patterson PH. Placental regulation of maternal-fetal interactions and brain development. Dev Neurobiol. 2012;72(10):1317−1326. doi: 10.1002/dneu.22045
  15. Lemasters JJ, QianT, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal. 2002;4(5):769−781. doi: 10.1089/152308602760598918
  16. Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med. 2019;142:113–122. doi: 10.1016/j.freeradbiomed.2019.04.028
  17. Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol. 2013;8(1):66–78. doi: 10.1007/s11481-012-9347-2
  18. Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional? Epigenetic? And physiological integration during development. J Clin Invest. 2010;120(4):1016−1125. doi: 10.1172/JCI41211
  19. Jawahar MC, Murgatroyd C, Harrison EL, Baune BT. Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disorders. Clin Epigenetics. 2015;7:122. doi: 10.1186/s13148-015-0156-3
  20. Bale TL, Baram TZ, Brown AS, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010;68(4):314−319. doi: 10.1016/j.biopsych.2010.05.028
  21. Perrone S, Santacroce A, Picardi A, Buonocore G. Fetal programing and early identification of newborns at risk of free radical-mediated diseases. World J Clin Pediatr. 2016;5(2):172−181. doi: 10.5409/wjcp.v5.i2.172
  22. Bos AF, Einspieler C, Prechtl HF. Intrauterine growth retardation, general movements, and neurodevelopmental outcome: a review. Dev Med Child Neurol. 2001;43(1):61−68. doi: 10.1017/s001216220100010x
  23. Zuk L, Harel S, Leitner Y, Fattal-Valevski A. Neonatal general movements: an early predictor for neurodevelopmental outcome in infants with intrauterine growth retardation. J Child Neurol. 2004;19(1):14−18. doi: 10.1177/088307380401900103011
  24. Bersani I, Pluchinotta F, Dotta A, et al. Early predictors of perinatal brain damage: the role of neurobiomarkers. Clin Chem Lab Med. 2020;58(4):471–486. doi: 10.1515/cclm-2019-0725
  25. Negro S, Benders MJNL, Tataranno ML, et al. Early prediction of hypoxic-ischemic brain injury by a new panel of biomarkers in a population of term newborns. Oxid Med Cell Longev. 2018;2018:7608108. doi: 10.1155/2018/7608108
  26. Longini M, Belvisi E, Proietti F, et al. Oxidative stress biomarkers: Establishment of reference values for isoprostanes, AOPP, and NPBI in cord blood. Mediators Inflam. 2017;2017:1758432. doi: 10.1155/2017/1758432
  27. Casetta B, Longini M, Proietti F, et al. Development of a fast and simple LC-MS/ MS method for measuring the F2-isoprostanes in newborns. J Matern Fetal Neonat Med. 2012;25(1):114−118. doi: 10.3109/14767058.2012.664856
  28. Paffetti P, Perrone S., Longini M, et al. Non-protein-bound iron detection in small samples of biological fluids and tissues. Biol Trace Elem Res. 2006;112(3):221–232. doi: 10.1385/BTER:112:3:221
  29. Perrone S, Laschi E, Buonocore G. Oxidative stress biomarkers in the perinatal period: Diagnostic and prognostic value. Sem Fetal Neonatal Med. 2020;25(2):101087. doi: 10.1016/j.siny.2020.101087
  30. Lu H, Huang W, Chen X, et al. Relationship between premature brain injury and multiple biomarkers in cord blood and amniotic fluid. J Matern-Fetal Neonatal Med. 2018;31(21):2898–2904. doi: 10.1080/14767058.2017.1359532
  31. Gazzolo D, Marinoni E, di Iorio R, et al. Circulating S100beta protein is increased in intrauterine growth-retarded fetuses. Pediatr Res. 2002;51(2):215–219. doi: 10.1203/00006450-200202000-00015
  32. Gazzolo D, Frigiola A, Bashir M, et al. Diagnostic accuracy of S100B urinary testing at birth in full-term asphyxiated newborns to predict neonatal death. PLoS One. 2009;4(2):e4298. doi: 10.1371/journal.pone.0004298
  33. Florio P, Marinoni E, Di Iorio R, et al. Urinary S100B protein concentrations are increased in intrauterine growth-retarded newborns. Pediatrics. 2006;118(3):e747–754. doi: 10.1542/peds.2005-2875
  34. Roka A, Kelen D, Halasz J, et al. Serum S100B and neuron-specific enolase levels in normothermic and hypothermic infants after perinatal asphyxia. Acta Paediatr. 2012;101(3):319–323. doi: 10.1111/j.1651-2227.2011.02480.x
  35. Nagdyman N, Komen W, Ko H, et al. Early biochemical indicators of hypoxic ischemic encephalopathy after birth asphyxia. Pediatr Res. 2001;49(4):502–506. doi: 10.1203/00006450-200104000-00011
  36. Costantine MM, Weiner SJ, Rouse DJ, et al. Umbilical cord blood biomarkers of neurologic injury and the risk of cerebral palsy or infant death. Int J Dev Neurosci. 2011;29(8):917–922. doi: 10.1016/j.ijdevneu.2011.06.009
  37. Celtik C, Acunaş B, Oner N, Pala O. Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Dev. 2004;26(6):398–402. doi: 10.1016/j.braindev.2003.12.007
  38. Mazarico E, Llurba E, Cabero L, et al. Associations between neural injury markers of intrauterine growth-restricted infants and neurodevelopment at 2 years of age. J Matern Fetal Neonatal Med. 2019;32(19):3197−3203. doi: 10.1080/14767058.2018.1460347
  39. Kolevzon A, Gross R, Reichenberg A. Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med. 2007;161(4):326−333. doi: 10.1001/archpedi.161.4.326
  40. Eide MG, Moster D, Irgens LM, et al. Degree of fetal growth restriction associated with schizophrenia risk in a national cohort. Psychol Med. 2013;43(10):2057−2066. doi: 10.1017/S003329171200267X
  41. Giannopoulou I, Pagida MA, Briana DD, Panayotacopoulou MT. Perinatal hypoxia as a risk factor for psychopathology later in life: the role of dopamine and neurotrophins. Hormones (Athens). 2018;17(1):25−32. doi: 10.1007/s42000-018-0007-7
  42. Homberg JR, Molteni R, Calabrese F, Riva MA. The serotonin-bdnf duo: developmental implications for the vulnerability to psychopathology. Neurosci Biobehav Rev. 2014;43:35−47. doi: 10.1016/j.neubiorev.2014.03.012
  43. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2):238−258. doi: 10.1124/pr.111.005108
  44. Malamitsi-Puchner A, Nikolaou KE, Economou E, et al. Intrauterine growth restriction and circulating neurotrophin levels at term. Early Hum Dev. 2007;83(7):465−469. doi: 10.1016/j.earlhumdev.2006.09.001
  45. Cannon TD, Yolken R, Buka S, Torrey EF. Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia. Biol Psychiatry. 2008;64(9):797−802. doi: 10.1016/j.biopsych.2008.04.012
  46. Briana DD, Malamitsi-Puchner A. Perinatal biomarkers implying ‘Developmental Origins of Health and Disease’ consequences in intrauterine growth restriction. Acta Paediatr. 2020;109(7):1317−1322. doi: 10.1111/apa.15022
  47. Morozova AYu, Milyutina YuP, Kovalchuk-Kovalevskaya OV, et al. Neuron-specific enolase and brain-derived neurotrophic factor levels in umbilical cord blood in full-term newborns with intrauterine growth retardation. Journal of Obstetrics and Women’s Diseases. 2019;68(1):29−36. (In Russ.). doi: 10.17816/JOWD68129-36
  48. Boersma GJ, Lee RS, Cordner ZA, et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnfexon IV in rats. Epigenetics. 2014;9(3):437−447. doi: 10.4161/epi.27558
  49. Blinov DV. The diagnostic value of eeg and biochemical markers of brain injury in hypoxic-ischemic encephalopathy. Epilepsiya i paroksizmal’nye sostonyaniya. 2016;8(4):91−98. (In Russ.). doi: 10.17749/2077-8333.2016.8.4.091-098
  50. Melashenko TV, Pozdnyakov AV, Lvov VS, Ivanov DO. MR-patterns of brain’s hypoxic-ischemic lesions in term newborns. Pediatr. 2017;8(6):86–93. (In Russ.). doi: 10.17816/PED8686-93
  51. Evsyukova II, Kovalchuk-Kovalevskaya OV, Zvereva NA, et al. Cerebral oximetry as method of diagnostics of perinatal brain pathology in newborns with intrauterine growth retardation. Neonatologiya; novosti, mneniya, obuchenie. 2020;8(1):9−14. (In Russ.). doi: 10.33029/2308-2402-2020-8-1-9-14

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies