The effect of vitamin D on women’s reproductive health

Cover Page

Abstract


Background. According to WHO data (2014), more than two billion people are deficient in microelements or have a “hidden hunger” due to the deficiencies of vitamins and minerals. Currently, experts estimate the vitamin D deficiency as a new type of pandemic of the XXI century.

Aim. The current analysis was undertaken to evaluate the effect of vitamin D on women’s reproductive health.

Materials and Methods. Based on the findings of retrospective and prospective studies, meta-analyzes, and material trials over the past 20 years, as well as in accordance with the results of 290 prospective cohort randomized trials, the level of vitamin D affects 172 basic physiological indicators associated with the risk of such complications of pregnancy as miscarriage, preeclampsia, gestational diabetes mellitus, and bacterial vaginosis.

Results. Vitamin D has been shown to be able to act as an immune regulator during the implantation. The placenta produces and responds to vitamin D, which has a local anti-inflammatory response and simultaneously induces the production of decidual growth factors for successful pregnancy. Activated T- and B-lymphocytes have the vitamin D receptors and therefore 1,25(OH)2D is an effective modulator in the immune system. It is able to inhibit the proliferation of Th1 and to restrict the production of such cytokines as interferon-gamma (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-α). In addition, vitamin D is able to induce cytokines of Th2 that have the protective effect on  pregnancy.

Conclusion. Adequate vitamin D intake is important for the successful conception and prolongation of pregnancy, as well as for the health of the fetus and newborn.


Margarita O. Bakleicheva

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: bakleicheva@gmail.com

Russian Federation, Saint Petersburg

Resident Physicia

Irina V. Kovaleva

Scandinavia Clinic

Email: call@avaclinic.ru

Russian Federation, Saint Petersburg

MD

Olesya N. Bespalova

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru

Russian Federation, Saint Petersburg

MD, PhD, DSci (Medicine), Deputy Director for Research

Igor Yu. Kogan

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: iagmail@ott.ru

Russian Federation, Saint Petersburg

MD, PhD, DSci (Medicine), Professor, Corresponding Member of RAS, Interim Director

  • Коровина Н.А., Захарова И.Н., Дмитриева Ю.А. Современные представления о физиологической роли витамина D у здоровых и больных детей // Педиатрия. Журнал им. Г.Н. Сперанского. - 2008. - Т. 87. - № 4. - С. 124-130. [Korovina NA, Zakhаrova IN, Dmitrieva YA. Current ideas about the physiological role of vitamin D in healthy and sick children. Pediatriia. 2008;87(4):124-130. (In Russ.)]
  • Семин С.Г., Волкова Л.В., Моисеев А.Б., Никитина Н.В. Перспективы изучения биологической роли витамина D // Педиатрия. Журнал им. Г.Н. Сперанского. - 2012. - Т. 91. - № 2. - С. 122-131. [Semin SG, Volkova LV, Moiseev AB, Nikitina NV. Prospects for studying the biological role of vitamin D. Pediatriia. 2012;91(2):122-131. (In Russ.)]
  • Витамин D и репродуктивное здоровье женщины / Под ред. И.Е. Зазерской. - СПб.: Эко-Вектор, 2017. [Vitamin D and women’s reproductive health. Ed by I.E. Zazerskaya. Saint Petersburg: Eco-Vector LLC; 2017. (In Russ.)]
  • Wehr E, Pilz S, Schweighofer N, et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol. 2009;161(4):575-582. doi: 10.1530/EJE-09-0432.
  • Шварц Г.Я. Витамин D и D-гормон. - М.: Анахарсис, 2005. [Shvarts GY. Vitamin D and D-hormone. Moscow: Anaharsis; 2005. (In Russ.)]
  • Риггз Б.Л., Мелтон Л.Д. Остеопороз. Этиология, диагностика, лечение. - СПб.: БИНОМ, 2000. [Riggz BL, Melton LD. Osteoporosis. Etiology, diagnosis, treatment. Saint Petersburg: BINOM; 2000. (In Russ.)]
  • Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911-1930. doi: 10.1210/jc.2011-0385.
  • Carter GD, Phinney KW. Assessing vitamin D status: time for a rethink? Clin Chem. 2014;60(6):809-811. doi: 10.1373/clinchem.2013.219386.
  • Powe CE, Evans MK, Wenger J, et al. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med. 2013;369(21):1991-2000. doi: 10.1056/NEJMoa1306357.
  • Shin JS, Choi MY, Longtine MS, Nelson DM. Vitamin D effects on pregnancy and the placenta. Placenta. 2010;31(12):1027-1034. doi: 10.1016/j.placenta.2010.08.015.
  • Bikle DD. Vitamin D and immune function: understanding common pathways. Curr Osteoporos Rep. 2009;7(2):58-63. doi: 10.1007/s11914-009-0011-6.
  • Drocourt L, Ourlin JC, Pascussi JM, et al. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem. 2002;277(28):25125-25132. doi: 10.1074/jbc.M201323200.
  • Руснак Ф.И. Витамин D и прогрессирование заболеваний почек // Вестник научно-технического развития. - 2009. - № 11. - С. 52-64. [Rusnak FI. Vitamin D and progression of kidney disease. Vestnik Nauchno-Tekhnicheskogo Razvitiya. 2009;(11):52-64. (In Russ.)]
  • Adams JS, Rafison B, Witzel S, et al. Regulation of the extrarenal CYP27B1-hydroxylase. J Steroid Biochem Mol Biol. 2014;144 Pt A:22-27. doi: 10.1016/j.jsbmb.2013.12.009.
  • Holick MF. Vitamin D: evolutionary, physiological and health perspectives. Curr Drug Targets. 2011;12(1):4-18. doi: 10.2174/138945011793591635.
  • Castro LC. The vitamin D endocrine system. Arq Bras Endocrinol Metabol. 2011;55(8):566-575. doi: 10.1590/S0004-27302011000800010.
  • Holick MF. Vitamin D deficiency. New Eng J Med. 2007;357(3):266-281. doi: 10.1056/NEJMra070553.
  • Kinuta K, Tanaka H, Moriwake T, et al. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology. 2000;141(4):1317-1324. doi: 10.1210/endo.141.4.7403.
  • Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1):26-34. doi: 10.1210/jc.2008-1454.
  • Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78(4):1193-1231. doi: 10.1152/physrev.1998.78.4.1193.
  • Jenster G, Spencer TE, Burcin MM, et al. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci U S A. 1997;94(15):7879-7884. doi: 10.1073/pnas.94.15.7879.
  • Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. EndocrRev. 2008;29(6):726-776. doi: 10.1210/er.2008-0004.
  • Blomberg Jensen M, Dissing S. Non-genomic effects of vitamin D in human spermatozoa. Steroids. 2012;77(10):903-909. doi: 10.1016/j.steroids.2012.02.020.
  • Громова О.А., Торшин И.Ю., Пронин А.В. Особенности фармакологии водорастворимой формы витамина D на основе мицелл // Фарматека. - 2015. - № 1. - С. 28-35. [Gromova OA, Torshin IJ, Pronin AV. Features of pharmacology of water-soluble form of vitamin D based on micelles. Farmateka. 2015;(1):28-35. (In Russ.)]
  • Cranney A, Horsley T, O’Donnell S, et al. Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess (Full Rep). 2007;(158):1-235.
  • Adams JS, Liu PT, Chun R, et al. Vitamin D in defense of the human immune response. Ann N Y Acad Sci. 2007;1117:94-105. doi: 10.1196/annals.1402.036.
  • Adams JS, Hewison M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab. 2008;4(2):80-90. doi: 10.1038/ncpendmet0716.
  • Rigby WF, Stacy T, Fanger MW. Inhibition of T lymphocyte mitogenesis by 1,25-dihydroxyvitamin D3 (calcitriol). J Clin Invest. 1984;74(4):1451-1455. doi: 10.1172/JCI111557.
  • Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634-1647. doi: 10.4049/jimmunol.179.3.1634.
  • Lemire JM, Adams JS, Sakai R, Jordan SC. 1 alpha,25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest. 1984;74(2):657-661. doi: 10.1172/JCI111465.
  • Karatekin G, Kaya A, Salihoglu O, et al. Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur J Clini Nutr. 2009;63(4):473-477. doi: 10.1038/sj.ejcn.1602960.
  • Liu PT, Schenk M, Walker VP, et al. Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PloS One. 2009;4(6):e5810. doi: 10.1371/journal.pone.0005810.
  • Wang TT, Nestel FP, Bourdeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909-2912. doi: 10.4049/jimmunol.173.5.2909.
  • Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179(4):2060-2063. doi: 10.4049/jimmunol.179.4.2060.
  • Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169-184. doi: 10.1111/j.0105-2896.2004.0124.x.
  • Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19(9):1067-1077. doi: 10.1096/fj.04-3284com.
  • Martineau AR, Wilkinson KA, Newton SM, et al. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol. 2007;178(11):7190-7198. doi: 10.4049/jimmunol.178.11.7190.
  • Banerjee P, Chatterjee M. Antiproliferative role of vitamin D and its analogs - a brief overview. Mol Cell Biochem. 2003;253(1-2):247-254. doi: 10.1023/A:1026072118217.
  • Samuel S, Sitrin MD. Vitamin D’s role in cell proliferation and differentiation. Nutr Rev. 2008;66(10 Suppl 2):S116-124. doi: 10.1111/j.1753-4887.2008.00094.x.
  • Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev. 2005;26(5):662-687. doi: 10.1210/er.2004-0002.
  • Gurlek A, Pittelkow MR, Kumar R. Modulation of growth factor/cytokine synthesis and signaling by 1alpha,25-dihydroxyvitamin D(3): implications in cell growth and differentiation. Endocr Rev. 2002;23(6):763-786. doi: 10.1210/er.2001-0044.
  • Verstuyf A, Carmeliet G, Bouillon R, Mathieu C. Vitamin D: a pleiotropic hormone. Kidney Int. 2010;78(2):140-145. doi: 10.1038/ki.2010.17.
  • Diaz L, Noyola-Martinez N, Barrera D, et al. Calcitriol inhibits TNF-alpha-induced inflammatory cytokines in human trophoblasts. J Reprod Immunol. 2009;81(1):17-24. doi: 10.1016/j.jri.2009.02.005.
  • Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684-700. doi: 10.1038/nrc2196.
  • Choi M, Makishima M. Therapeutic applications for novel non-hypercalcemic vitamin D receptor ligands. ExpertOpin Ther Pat. 2009;19(5):593-606. doi: 10.1517/ 13543770902877717.
  • Guyton KZ, Kensler TW, Posner GH. Cancer chemoprevention using natural vitamin D and synthetic analogs. Annu Rev Pharmacol Toxicol. 2001;41:421-442. doi: 10.1146/annurev.pharmtox.41.1.421.
  • Lappe JM, Travers-Gustafson D, Davies KM, et al. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr. 2007;85(6):1586-1591. doi: 10.1093/ajcn/85.6.1586.
  • Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84(1):18-28. doi: 10.1093/ajcn/84.1.18.
  • Pludowski P, Holick MF, Pilz S, et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev. 2013;12(10):976-989. doi: 10.1016/j.autrev.2013.02.004.
  • Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol. 2014;144 Pt A:138-145. doi: 10.1016/j.jsbmb.2013.11.003.
  • Тишова Ю.А., Ворслов Л.О., Жуков А.Ю., Калинченко С.Ю. Распространенность дефицита D-гормона (25ОНD3) у пациентов с ожирением в России: ретроспективное популяционное исследование / VII Международный конгресс ISSAM; Ноябрь 29 - Декабрь 1, 2013; Москва. - М., 2013. [Tishova YA, Vorslov LO, Zhukov AY, Kalinchenko SY. Prevalence of D deficiency-hormone (25ОНD3) in obese patients in Russia: a retrospective population-based study. In: Proceedings of the 7th International Congress ISSAM; 2013 Nov 29 - Dec 1; Moscow. Moscow; 2013. (In Russ.)]
  • Тюзиков И.А. Гормон D-статус у мужчин с андрологической патологией (пилотное исследование) / X Международный конгресс «Мужское здоровье»; Май 22-24, 2014. Минск. - Минск, 2014. [Tyuzikov IA. Hormone D-status in men with andrological pathology (pilot study). In: Proceedings of the 10th International Congress “Men’s healthˮ; 2014 May 22-24; Minsk. Minsk; 2014. (In Russ.)]
  • Anagnostis P, Karras S, Goulis DG. Vitamin D in human reproduction: a narrative review. Int J Clin Pract. 2013;67(3):225-235. doi: 10.1111/ijcp.12031.
  • Zhao J, Huang X, Xu B, et al. Whether vitamin D was associated with clinical outcome after IVF/ICSI: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2018;16(1):13. doi: 10.1186/s12958-018-0324-3.
  • Weisman Y, Harell A, Edelstein S, et al. 1 alpha, 25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature. 1979;281(5729):317-319. doi: 10.1038/281317a0.
  • Liu N, Kaplan AT, Low J, et al. Vitamin D induces innate antibacterial responses in human trophoblasts via an intracrine pathway. Biol Reprod. 2009;80(3):398-406. doi: 10.1095/biolreprod.108.073577.
  • Evans KN, Nguyen L, Chan J, et al. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod. 2006;75(6):816-822. doi: 10.1095/biolreprod.106.054056.
  • Novakovic B, Sibson M, Ng HK, et al. Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem. 2009;284(22):14838-14848. doi: 10.1074/jbc.M809542200.
  • Cross NA, Hillman LS, Allen SH, et al. Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am J Clin Nutr. 1995;61(3):514-523. doi: 10.1093/ajcn/61.3.514.
  • Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev. 1997;18(6):832-872. doi: 10.1210/edrv.18.6.0319.
  • Zehnder D, Evans KN, Kilby MD, et al. The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am J Pathol. 2002;161(1):105-114. PMC1850695. doi: 10.1016/S0002-9440(10)64162-4.
  • Piccinni MP, Scaletti C, Maggi E, Romagnani S. Role of hormone-controlled Th1- and Th2-type cytokines in successful pregnancy. J Neuroimmunol. 2000;109(1):30-33. doi: 10.1016/S0165-5728(00)00299-X.
  • Lapillonne A. Vitamin D deficiency during pregnancy may impair maternal and fetal outcomes. Med Hypotheses. 2010;74(1):71-75. doi: 10.1016/j.mehy.2009.07.054.
  • Ganguly A, Tamblyn JA, Finn-Sell S, et al. Vitamin D, the placenta and early pregnancy: effects on trophoblast function. J Endocrinol. 2018;236(2):R93-R103. doi: 10.1530/JOE-17-0491.
  • Du H, Daftary GS, Lalwani SI, Taylor HS. Direct regulation of HOXA10 by 1,25(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol Endocrinol. 2005;19(9):2222-2233. doi: 10.1210/me.2004-0336.
  • Bodnar LM, Krohn MA, Simhan HN. Maternal vitamin D deficiency is associated with bacterial vaginosis in the first trimester of pregnancy. J Nutr. 2009;139(6):1157-1161. doi: 10.3945/jn.108.103168.
  • Bodnar LM, Catov JM, Simhan HN, et al. Maternal vitamin D deficiency increases the risk of preeclampsia. J Clin Endocrinol Metab. 2007;92(9):3517-3522. doi: 10.1210/jc.2007-0718.
  • Halhali A, Acker GM, Garabedian M. 1,25-Dihydroxyvitamin D3 induces in vivo the decidualization of rat endometrial cells. J Reprod Fertil. 1991;91(1):59-64. doi: 10.1530/jrf.0.0910059.
  • Darmochwal-Kolarz D, Leszczynska-Gorzelak B, Rolinski J, Oleszczuk J. T helper 1- and T helper 2-type cytokine imbalance in pregnant women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 1999;86(2):165-170. doi: 10.1016/S0301-2115(99)00065-2.
  • Halhali A, Tovar AR, Torres N, et al. Preeclampsia is associated with low circulating levels of insulin-like growth factor I and 1,25-dihydroxyvitamin D in maternal and umbilical cord compartments. J Clin Endocrinol Metab. 2000;85(5):1828-1833. doi: 10.1210/jcem.85.5.6528.
  • Zhang C, Qiu C, Hu FB, et al. Maternal plasma 25-hydroxyvitamin D concentrations and the risk for gestational diabetes mellitus. PloS One. 2008;3(11):e3753. doi: 10.1371/journal.pone.0003753.
  • Merewood A, Mehta SD, Chen TC, et al. Association between vitamin D deficiency and primary cesarean section. J Clin Endocrinol Metab. 2009;94(3):940-945. doi: 10.1210/jc.2008-1217.
  • Yorifuji J, Yorifuji T, Tachibana K, et al. Craniotabes in normal newborns: the earliest sign of subclinical vitamin D deficiency. J Clin Endocrinol Metab. 2008;93(5):1784-1788. doi: 10.1210/jc.2007-2254.
  • Camadoo L, Tibbott R, Isaza F. Maternal vitamin D deficiency associated with neonatal hypocalcaemic convulsions. Nutr J. 2007;6:23. doi: 10.1186/1475-2891-6-23.
  • Mahon P, Harvey N, Crozier S, et al. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res. 2010;25(1):14-19. doi: 10.1359/jbmr.090701.
  • Maiya S, Sullivan I, Allgrove J, et al. Hypocalcaemia and vitamin D deficiency: an important, but preventable, cause of life-threatening infant heart failure. Heart. 2008;94(5):581-584. doi: 10.1136/hrt.2007.119792.
  • Sayers A, Tobias JH. Estimated maternal ultraviolet B exposure levels in pregnancy influence skeletal development of the child. J Clin Endocrinol Metab. 2009;94(3):765-771. doi: 10.1210/jc.2008-2146.
  • Javaid MK, Crozier SR, Harvey NC, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet. 2006;367(9504):36-43. doi: 10.1016/S0140-6736(06)67922-1.
  • Stene LC, Ulriksen J, Magnus P, Joner G. Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring. Diabetologia. 2000;43(9):1093-1098. doi: 10.1007/s001250051499.
  • Kinney DK, Teixeira P, Hsu D, et al. Relation of schizophrenia prevalence to latitude, climate, fish consumption, infant mortality, and skin color: a role for prenatal vitamin d deficiency and infections? Schizophr Bull. 2009;35(3):582-595. doi: 10.1093/schbul/sbp023.
  • Brehm JM, Celedon JC, Soto-Quiros ME, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica. Am J Respir Crit Care Med. 2009;179(9):765-771. doi: 10.1164/rccm.200808-1361OC.
  • Litonjua AA, Weiss ST. Is vitamin D deficiency to blame for the asthma epidemic? J Allergy Clin Immunol. 2007;120(5):1031-1035. doi: 10.1016/j.jaci.2007.08.028.
  • ods.od.nih.gov [Internet]. National Institutes of Health, U.S.: Vitamin D Fact Sheet for Health Professionals. [updated 2018 Mar 2; cited 05 Jun 2018] Available from: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/.
  • Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014;2(1):76-89. doi: 10.1016/S2213-8587(13)70165-7.
  • vitamindsociety.org [Internet]. The Vitamin D Society. Vitamin D Health Benefits. [cited 5 Jun 2018] Available from: http://www.vitamindsociety.org/benefits.php.
  • Wang Y, Li H, Zheng M, et al. Maternal vitamin D deficiency increases the risk of adverse neonatal outcomes in the Chinese population: A prospective cohort study. PloS One. 2018;13(4):e0195700. doi: 10.1371/journal.pone.0195700.
  • Masuda S, Jones G. Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol Cancer Ther. 2006;5(4):797-808. doi: 10.1158/1535-7163.MCT-05-0539.
  • Плещева А.В., Пигарова Е.А., Дзеранова Л.К. Витамин D и метаболизм: факты, мифы и предубеждения // Ожирение и метаболизм. - 2012. - № 2. - C. 33-42. [Pleshheva AV, Pigarova EA, Dzeranova LK. Vitamin D and metabolism: facts, myths and misconceptions. Obesity and Metabolism. 2012;(2):33-42. (In Russ.)]
  • Ford JA, MacLennan GS, Avenell A, et al. Cardiovascular disease and vitamin D supplementation: trial analysis, systematic review, and meta-analysis. Am J Clin Nutr. 2014;100(3):746-755. doi: 10.3945/ajcn.113.082602.
  • Zittermann A, Prokop S. The role of vitamin D for cardiovascular disease and overall mortality. Adv Exp Med Biol. 2014;810:106-119. doi: 10.1007/978-1-4939-0437-2_6.
  • Tomlinson PB, Joseph C, Angioi M. Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J Sci Med Sport. 2015;18(5):575-580. doi: 10.1016/j.jsams.2014.07.022.
  • Haghsheno MA, Mellstrom D, Behre CJ, et al. Low 25-OH vitamin D is associated with benign prostatic hyperplasia. J Urol. 2013;190(2):608-614. doi: 10.1016/j.juro.2013.01.104.
  • Gandini S, Boniol M, Haukka J, et al. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int J Cancer. 2011;128(6):1414-1424. doi: 10.1002/ijc.25439.
  • Xu Y, Shao X, Yao Y, et al. Positive association between circulating 25-hydroxyvitamin D levels and prostate cancer risk: new findings from an updated meta-analysis. J Cancer Res Clin Oncol. 2014;140(9):1465-1477. doi: 10.1007/s00432-014-1706-3.

Supplementary files

Supplementary Files Action
1. Fig. 1. Synthesis and metabolism of vitamin D in the body [10] View (117KB) Indexing metadata
2. Fig. 2. Vitamin D mechanism of action [10]. 1,25(OH)2D — active form of vitamin D calcitriol; VDR — receptor for vitamin D; RXR — retinoid X-receptor; VDRE — the connection of the VDR-RXR complex with the corresponding region of the genome and the triggering of gene transcription mechanisms followed by translation of the corresponding protein molecules; PI3K, phosphatidylinositol-3-kinase; PKC, protein kinase C. Genomic and non-genomic responses of vitamin D receptor binding to 1,25(OH)2D. In the genomic response, 1,25(OH)2D binds to the nuclear vitamin D receptor (VDR). Heterodimerization of the VDR with the retinoid X receptor (RXR) and binding to vitamin D response elements (VDREs) in the promoters of target genes affects transcription, usually by increasing transcription, and generating downstream biological responses. In the non-genomic response pathway, binding of 1,25(OH)2D to VDR associated with caveolae of the plasma membrane activates one or more second messenger systems to elicit rapid responses View (158KB) Indexing metadata
3. Fig. 3. Risks for mother and fetus in case of vitamin D deficiency (25(OH)D content <32 ng/ml) during pregnancy and after childbirth View (180KB) Indexing metadata

Views

Abstract - 251

PDF (Russian) - 94

PlumX


Copyright (c) 2018 Bakleicheva M.O., Kovaleva I.V., Bespalova O.N., Kogan I.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.