Modern concepts about the mechanisms of initiation and regulation of labor activity

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The mechanisms of initiation and regulation of labor activity remain insufficiently studied. Currently, there are a significant number of theories that explain the mechanism of onset and regulation of labor, many of which are only of historical interest. Meanwhile, awareness of the true causes and mechanisms of regulation of labor activity will allow preventing not only premature or postmature birth, but also abnormal labor.

AIM: The aim of this study was to discover modern concepts about the mechanisms of initiation and regulation of labor activity.

MATERIALS AND METHODS: We carried out a detailed systematic analysis of modern domestic and foreign literature on the mechanisms of initiation and regulation of labor activity. The study used data hosted by such databases as e-LIBRARY, Scopus, PubMed, MEDLINE, ScienceDirect, and the Cochrane Library (from January 2015 to December 2021).

CONCLUSIONS: According to the literature, the most significant role in the initiation and regulation of labor activity is played by epigenetic mechanisms that reflect the transmission of genetically encoded information in response to a great number of exogenous and endogenous signals varying from patient to patient.

Full Text

Restricted Access

About the authors

Victor A. Mudrov

Chita State Medical Academy

Author for correspondence.
Email: mudrov_viktor@mail.ru
ORCID iD: 0000-0002-5961-5400
Scopus Author ID: 57204736023

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Chita

References

  1. OOO “Rossiyskoe obshchestvo akusherov-ginekologov” (ROAG), Assotsiatsiya anesteziologov-reanimatologov (AAR), Assotsiatsiya akusherskikh anesteziologov-reanimatologov (AAAR). Rody odnoplodnye, samoproizvol’noe rodorazreshenie v zatylochnom predlezhanii (normal’nye rody). Klinicheskie rekomendatsii. 2021. (In Russ.). [cited 2022 Jan 11]. Available from: http://www.consultant.ru/document/cons_doc_LAW_388617/
  2. Obstetrics: tutorial. Ed. by V.E. Radzinsky, A.M. Fuks. Moscow: GEOTAR-Media; 2016. (In Russ.)
  3. Zdravoohranenie v Rossii. 2019: Statisticheskiy sbornik. Moscow: Rosstat; 2019. (In Russ.). [cited 2022 Jan 11]. Available from: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf
  4. Baskett TF, Kalder JeA, Sabaratnam Arulkumaran. Operativnoe akusherstvo Manro Kerra. Moscow: Rid Jelsiver; 2015. (In Russ.)
  5. Aylamazyan EK, Tarasova MA, Baranov VS, et al. Akusherstvo: uchebnik. 10th ed. Moscow: GEOTAR-Media; 2019. (In Russ.)
  6. Strizhakov AN, Ignatko IV, Davydov AI. Akusherstvo: uchebnik. Moscow: GEOTAR-Media; 2020. (In Russ.)
  7. Ushakova GA, Petrich LN. Modern views on the mechanisms of labor. Overview. Mat’ i Ditya v Kuzbasse. 2016;65(2):4–10. (In Russ.)
  8. Mendelson CR, Gao L, Montalbano AP. Multifactorial regulation of myometrial contractility during pregnancy and parturitio. Front Endocrinol (Lausanne). 2019;10:714. doi: 10.3389/fendo.2019.00714
  9. Renthal NE, Williams KC, Montalbano AP, et al. Molecular regulation of parturition: A myometrial perspective. Cold Spring Harb Perspect Med. 2015;11(5):a023069. doi: 10.1101/cshperspect.a023069
  10. Ilicic M, Zakar T, Paul J.W. The regulation of uterine function during parturition: an update and recent advances. Reprod Sci. 2020;27(1):3–28. doi: 10.1007/s43032-019-00001-y
  11. Sivarajasingam SP, Imami N, Johnson MR. Myometrial cytokines and their role in the onset of labour. J Endocrinol. 2016;231(3):R101–R119. doi: 10.1530/JOE-16-0157
  12. Ando K, Hedou JJ, Feyaerts D, et al. A peripheral immune signature of labor induction. Front Immunol. 2021;12:725989. doi: 10.3389/fimmu.2021.725989
  13. Leimert KB, Xu W, Princ MM, et al. Inflammatory amplification: A central tenet of uterine transition for labor. Front Cell Infect Microbiol. 2021;11:660983. doi: 10.3389/fcimb.2021.660983
  14. Lim R, Lappas M. Role of IRG1 in regulating pro-inflammatory and pro-labor mediators in human myometrium. Reprod Sci. 2020;27(1):61–74. doi: 10.1007/s43032-019-00133-1
  15. Reinl EL, Zhao P, Wu W, et al. Na+-Leak channel, non-selective (NALCN) regulates myometrial excitability and facilitates successful parturition. Cell Physiol Biochem. 2018;48(2):503–515. doi: 10.1159/000491805
  16. Ferreira JJ, Amazu C, Puga-Molina LC, et al. SLO2.1/NALCN a sodium signaling complex that regulates uterine activity. iScience. 2021;24(11):103210. doi: 10.1016/j.isci.2021.103210
  17. Cappelletti M, Doll JR, Stankiewicz TE, et al. Maternal regulation of inflammatory cues is required for induction of preterm birth. JCI Insight. 2020;5(22):e138812. doi: 10.1172/jci.insight.138812
  18. Beck S, Buhimschi IA, Summerfield TL, et al. Toll-like receptor 9, maternal cell-free DNA and myometrial cell response to CpG oligodeoxynucleotide stimulation. Am J Reprod Immunol. 2019;81(4):e13100. doi: 10.1111/aji.13100
  19. Gomez-Lopez N, Garcia-Flores V, Chin PY, et al. Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury. JCI Insight. 2021;6(19):e146089. doi: 10.1172/jci.insight.146089
  20. Shynlova O, Nadeem L, Zhang J, et al. Myometrial activation: Novel concepts underlying labor. Placenta. 2020;92:28–36. doi: 10.1016/j.placenta.2020.02.005
  21. Marinello W, Feng L, Allen TK. Progestins inhibit interleukin-1β-induced matrix metalloproteinase 1 and interleukin 8 expression via the glucocorticoid receptor in primary human amnion mesenchymal cells. Front Physiol. 2020;11:900. doi: 10.3389/fphys.2020.00900
  22. Lozovyy V, Richardson L, Saade G, Menon R. Progesterone receptor membrane components: key regulators of fetal membrane integrity. Biol Reprod. 2021;104(2):445–456. doi: 10.1093/biolre/ioaa192
  23. Nadeem L, Balendran R, Dorogin A, et al. Pro-inflammatory signals induce 20α-HSD expression in myometrial cells: A key mechanism for local progesterone withdrawal. J Cell Mol Med. 2021;25(14):6773–6785. doi: 10.1111/jcmm.16681
  24. Marshall SA, Senadheera SN, Parry LJ, Girling JE. The role of relaxin in normal and abnormal uterine function during the menstrual cycle and early pregnancy. Reprod Sci. 2017;24(3):342–354. doi: 10.1177/1933719116657189
  25. Nowak M, Gram A, Boos A, et al. Functional implications of the utero-placental relaxin (RLN) system in the dog throughout pregnancy and at term. Reproduction. 2017;154(4):415–431. doi: 10.1530/REP-17-0135
  26. Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol. 2020;42(4):431–450. doi: 10.1007/s00281-020-00808-x
  27. Augustine RA, Seymour AJ, Campbell RE, et al. Integrative neuro-humoral regulation of oxytocin neuron activity in pregnancy and lactation. J Neuroendocrinol. 2018. doi: 10.1111/jne.12569
  28. Seymour AJ, Scott V, Augustine RA, et al. Development of an excitatory kisspeptin projection to the oxytocin system in late pregnancy. J Physiol. 2017;595(3):825–838. doi: 10.1113/JP273051
  29. Tsujimoto M, Aoki K, Goto Y, Ohnishi A. Molecular and functional diversity of the oxytocinase subfamily of M1 aminopeptidases. J Biochem. 2021;169(4):409–420. doi: 10.1093/jb/mvab009
  30. Uvnas-Moberg K, Ekstrom-Bergstrom A, Berg M, et al. Maternal plasma levels of oxytocin during physiological childbirth – a systematic review with implications for uterine contractions and central actions of oxytocin. BMC Pregnancy Childbirth. 2019;19(1):285. doi: 10.1186/s12884-019-2365-9
  31. Armstrong WE. Kisspeptin: a new peptidergic system regulating oxytocin neurons and their reproductive plasticity in the hypothalamo-neurohypophysial system. J Physiol. 2017;595(3):611–612. doi: 10.1113/JP273364
  32. Wray S, Prendergast C. The myometrium: From excitation to contractions and labour. Adv Exp Med Biol. 2019;1124:233–263. doi: 10.1007/978-981-13-5895-1_10
  33. Bologov MA, Penjhoyan GA. Effect of stress on development of abnormalities of labor. Kubanskii nauchnyi meditsinskii vestnik. 2018;25(1):46–53. (In Russ.). doi: 10.25207/1608-6228-2018-25-1-46-53
  34. Michalik A, Wojcicka L, Zdun-Ryzewska A, et al. Polish adaptation of the pregnancy-related anxiety questionnaire-revised 2 for all pregnant women. Healthcare (Basel). 2021;9(7):917. doi: 10.3390/healthcare9070917
  35. Sheen K, Slade P. Examining the content and moderators of women’s fears for giving birth: A meta-synthesis. J Clin Nurs. 2018;27(13–14):2523–2535. doi: 10.1111/jocn.14219
  36. OOO “Rossiyskoe obshchestvo akusherov-ginekologov” (ROAG), Assotsiatsiya akusherskikh anesteziologov-reanimatologov (AAAR). Prezhdevremennye rody. Klinicheskie rekomendatsii. 2020. (In Russ.). [cited 2022 Jan 11]. Available from: https://www.dzhmao.ru/spez/klin_recom/akushGinekol/2020/prehd_rody.pdf
  37. Goldsztejn U, Nehorai A. A myofibre model for the study of uterine excitation-contraction dynamics. Sci Rep. 2020;10(1):16221. doi: 10.1038/s41598-020-72562-x
  38. He L, Lee GT, Zhou H, et al. Expression, regulation, and function of the calmodulin accessory protein PCP4/PEP-19 in myometrium. Reprod Sci. 2019;26(12):1650–1660. doi: 10.1177/1933719119828072
  39. Philip M, Snow RJ, Gatta PAD, et al. Creatine metabolism in the uterus: potential implications for reproductive biology. Amino Acids. 2020;52(9):1275–1283. doi: 10.1007/s00726-020-02896-3
  40. Madaan A, Nadeau-Vallee M, Rivera JC, et al. Lactate produced during labor modulates uterine inflammation via GPR81 (HCA1). Am J Obstet Gynecol. 2017;216(1):60.e1–60.e17. doi: 10.1016/j.ajog.2016.09.072
  41. Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-dependent regulation of immune responses by dendritic cells and macrophages. Front Immunol. 2021;12:691134. doi: 10.3389/fimmu.2021.691134
  42. Chen L, Wang L, Luo Y, et al. Integrated proteotranscriptomics of human myometrium in labor landscape reveals the increased molecular associated with inflammation under hypoxia stress. Front Immunol. 2021;12:722816. doi: 10.3389/fimmu.2021.722816
  43. Rabotti C, Mischi M. Propagation of electrical activity in uterine muscle during pregnancy: a review. Acta Physiol (Oxf). 2015;213(2):406–416. doi: 10.1111/apha.12424
  44. Lutton EJ, Lammers WJEP, James S, et al. Identification of uterine pacemaker regions at the myometrial-placental interface in the rat. J Physiol. 2018;596(14):2841–2852. doi: 10.1113/JP275688
  45. Kagami K, Ono M, Iizuka T, et al. A novel third mesh-like myometrial layer connects the longitudinal and circular muscle fibers-A potential stratum to coordinate uterine contractions. Sci Rep. 2020;10(1):8274. doi: 10.1038/s41598-020-65299-0
  46. Kuijsters NPM, Sammali F, Ye X, et al. Propagation of spontaneous electrical activity in the ex vivo human uterus. Pflügers Arch. 2020;472(8):1065–1078. doi: 10.1007/s00424-020-02426-w
  47. Massenavette L, Paul W, Corriveau S, et al. Phorbol 12,13-dibutyrate-induced protein kinase C activation triggers sustained contracture in human myometrium in vitro. Am J Obstet Gynecol. 2017;217(3):358.e1–358.e9. doi: 10.1016/j.ajog.2017.04.041
  48. Lavie A, Shinar S, Hiersch L, et al. Uterine electrical activity, oxytocin and labor: translating electrical into mechanical. Arch Gynecol Obstet. 2018;297(6):1405–1413. doi: 10.1007/s00404-018-4721-9
  49. Lim R, Lappas M. GIT2 deficiency attenuates inflammation-induced expression of pro-labor mediators in human amnion and myometrial cells. Biol Reprod. 2019;100(6):1617–1629. doi: 10.1093/biolre/ioz041
  50. Lappas M. Copper metabolism domain-containing 1 represses the mediators involved in the terminal effector pathways of human labour and delivery. Mol Hum Reprod. 2016;22(4):299–310. doi: 10.1093/molehr/gav075
  51. Gao L, Wang G, Liu WN, et al. Reciprocal feedback between miR-181a and E2/ERα in byometrium enhances inflammation leading to labor. J Clin Endocrinol Metab. 2016;101(10):3646–3656. doi: 10.1210/jc.2016-2078

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies