Mechanistic Insights into the Development of Fetal Growth Restriction Associated with Fetal Sex
- Authors: Nikolaenkov I.P.1, Shakalis D.V.2, Sudakov D.S.3,4, Dymarskaya Y.R.3, Korneva D.A.3
-
Affiliations:
- Sestroretskaya Multidisciplinary Clinic
- Saint Petersburg State Pediatric Medical University
- North-Western State Medical University named after I.I. Mechnikov
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- Issue: Vol 74, No 2 (2025)
- Pages: 68-75
- Section: Reviews
- Submitted: 21.02.2025
- Accepted: 14.03.2025
- Published: 26.05.2025
- URL: https://journals.eco-vector.com/jowd/article/view/659815
- DOI: https://doi.org/10.17816/JOWD659815
- EDN: https://elibrary.ru/FDJBIM
- ID: 659815
Cite item
Abstract
Genetic and hormonal determinants not only define male and female fenotypes. Differences that occur from the early stages of embryogenesis can also cause normal and pathological phenotypic manifestations depending on fetal sex, as well as different predispositions to diseases in the future. Fetal growth restriction is one of the most common causes of perinatal mortality and morbidity in newborns that complicates a significant number of pregnancies. In this review, we summarized and analyzed the recent data posted on the eLibrary and PubMed platforms with reference to the relationship between the sex of the fetus and the development of fetal growth restriction. According to the available data, fetal growth restriction occurs more frequently in female fetuses than in male ones. This is because in pregnant women, the sex of the fetus determines its biological susceptibility to such risk factors for fetal growth restriction as gestational diabetes mellitus, gestational hypertension, preeclampsia, asthma, etc. In a male fetus, the developing placenta is primarily aimed at increasing fetal weight; while for a female fetus, the priority is on the multiple mechanisms that regulate immune protection, adaptability, and rapid response to modifiable adverse effects.
Full Text

About the authors
Igor P. Nikolaenkov
Sestroretskaya Multidisciplinary Clinic
Email: nikolaenkov_igor@mail.ru
ORCID iD: 0000-0003-2780-0887
SPIN-code: 5571-4620
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgDmitriy V. Shakalis
Saint Petersburg State Pediatric Medical University
Email: shakalisdoc@gmail.com
ORCID iD: 0009-0002-7876-365X
SPIN-code: 2886-1420
MD
Russian Federation, Saint PetersburgDmitry S. Sudakov
North-Western State Medical University named after I.I. Mechnikov; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Author for correspondence.
Email: suddakovv@yandex.ru
ORCID iD: 0000-0002-5270-0397
SPIN-code: 6189-8705
MD, Cand. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgYulia R. Dymarskaya
North-Western State Medical University named after I.I. Mechnikov
Email: julia_dym@mail.ru
ORCID iD: 0000-0001-6027-6875
SPIN-code: 4195-3410
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgDarya A. Korneva
North-Western State Medical University named after I.I. Mechnikov
Email: dashulya_korneva01@mail.ru
ORCID iD: 0009-0001-0669-693X
Russian Federation, Saint Petersburg
References
- Nikolayenkov IP, Shakalis DV, Sudakov DS. Mechanisms of injury in the nervous system in fetuses with growth restriction. Journal of Obstetrics and Women’s Diseases. 2024;73(1):125–136. EDN: EJDLVJ doi: 10.17816/JOWD501748
- Radulescu L, Ferechide D, Popa F. The importance of fetal gender in intrauterine growth restriction. J Med Life. 2013;6(1):38–39.
- Albu AR, Anca AF, Horhoianu VV, et al. Predictive factors for intrauterine growth restriction. J Med Life. 2014;7(2):165–171.
- Russian Society of Obstetricians and Gynecologists. Insufficient fetal growth requiring maternal medical care (fetal growth restriction). Clinical recommendations. 2022. (In Russ.) [cited 2025 Mar 23] Available from: https://roag-portal.ru/recommendations_obstetrics
- Spinillo A, Capuzzo E, Nicola S, et al. Interaction between fetal gender and risk factors for fetal growth retardation. Am J Obstet Gynecol. 1994;171(5):1273–1277. doi: 10.1016/0002-9378(94)90146-5
- Melamed N, Yogev Y, Glezerman M. Fetal gender and pregnancy outcome. J Matern Fetal Neonatal Med. 2010;23(4):338–344. doi: 10.3109/14767050903300969
- Aibar L, Puertas A, Valverde M, et al. Fetal sex and perinatal outcomes. J Perinat Med. 2012;40(3):271–276. doi: 10.1515/jpm-2011-0137
- Liu J, Wang XF, Wang Y, et al. The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction: a report from Mainland China. Medicine (Baltimore). 2014;93(27):e210. doi: 10.1097/MD.0000000000000210
- Clifton VL, Murphy VE. Maternal asthma as a model for examining fetal sex-specific effects on maternal physiology and placental mechanisms that regulate human fetal growth. Placenta. 2004;25(Suppl A):S45–S52. EDN: MEVOZD doi: 10.1016/j.placenta.2004.01.004
- Clifton VL. Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta. 2010;31(Suppl):S33–S39. doi: 10.1016/j.placenta.2009.11.010
- Murphy VE, Gibson PG, Giles WB, et al. Maternal asthma is associated with reduced female fetal growth. Am J Respir Crit Care Med. 2003;168(11):1317–1323. doi: 10.1164/rccm.200303-374OC
- Dymarskaya YuR. Features of the course of pregnancy and the state of the placental complex in pregnant women with bronchial asthma [dissertation abstract]. Saint Petersburg; 2015. 24 p. EDN: ZPVUWV
- Ray PF, Conaghan J, Winston RM, et al. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J Reprod Fertil. 1995;104(1):165–171. doi: 10.1530/jrf.0.1040165
- Kochhar HP, Peippo J, King WA. Sex related embryo development. Theriogenology. 2001;55(1):3–14. doi: 10.1016/s0093-691x(00)00441-6
- Campbell GJ, Lucic Fisher SG, Brandon AE, et al. Sex-specific effects of maternal dietary carbohydrate quality on fetal development and offspring metabolic phenotype in mice. Front Nutr. 2022;9:917880. doi: 10.3389/fnut.2022.1094120
- Meakin AS, Cuffe JSM, Darby JRT, et al. Let’s talk about placental sex, baby: understanding mechanisms that drive female- and male-specific fetal growth and developmental outcomes. Int J Mol Sci. 2021;22(12):6386. doi: 10.3390/ijms22126386
- Wallace JM, Horgan GW, Bhattacharya S. Placental weight and efficiency in relation to maternal body mass index and the risk of pregnancy complications in women delivering singleton babies. Placenta. 2012;33(8):611–618. doi: 10.1016/j.placenta.2012.05.006
- Osei-Kumah A, Smith R, Jurisica I, et al. Sex-specific differences in placental global gene expression in pregnancies complicated by asthma. Placenta. 2011;32(8):570–578. doi: 10.1016/j.placenta.2011.05.005
- Gonzalez TL, Sun T, Koeppel AF, et al. Sex differences in the late first trimester human placenta transcriptome. Biol Sex Differ. 2018;9(1):4. EDN: YGBNUT doi: 10.1186/s13293-018-0165-y
- Sun T, Gonzalez TL, Deng N, et al. Sexually Dimorphic Crosstalk at the Maternal-Fetal Interface. J Clin Endocrinol Metab. 2020;105(12):e4831–e4847. EDN: KUSYZT doi: 10.1210/clinem/dgaa503
- Sedlmeier EM, Brunner S, Much D, et al. Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternal dietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy. BMC Genomics. 2014;15(1):941. EDN: EFNVCC doi: 10.1186/1471-2164-15-941
- Renfree MB, Ager EI, Shaw G, et al. Genomic imprinting in marsupial placentation. Reproduction. 2008;136(5):523–531. doi: 10.1530/REP-08-0264
- Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32. doi: 10.1038/35047554
- Broere-Brown ZA, Baan E, Schalekamp-Timmermans S, et al. Sex-specific differences in fetal and infant growth patterns: a prospective population-based cohort study. Biol Sex Differ. 2016;7:65. EDN: MQHYCP doi: 10.1186/s13293-016-0119-1
- Alur P. Sex differences in nutrition, growth, and metabolism in preterm infants. Front Pediatr. 2019;7:22. doi: 10.3389/fped.2019.00022
- Mesiano S. Endocrinology of human pregnancy and fetal-placental neuorendocrine development. In: Strauss JF, Barbieri RL, editors. Yen & Jaffe’s reproductive endocrinology physiology, pathophysiology, and clinical management. 8th edn. Philadelphia: Elsevier; 2017. P. 256–284.e9
- Harshini Katugampola, Ranna El Khairi, Mehul T. Fetal and neonatal endocrinology. In: Robertson RP. DeGroot’s endocrinology. Basic science and clinical practice. 8th edn. Philadelphia: Elsevier; 2022. P. 2152–2199. [cited 2025 Mar 23] Available from: https://natmedlib.uz/fm/#s/-egGqFpQ
- Tal R, Taylor HS. Endocrinology of pregnancy. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000–. [cited 2025 Mar 23] Available from: https://www.ncbi.nlm.nih.gov/books/NBK278962
- Kota SK, Gayatri K, Jammula S, et al. Fetal endocrinology. Indian J Endocrinol Metab. 2013;17(4):568–579. doi: 10.4103/2230-8210.113722
- Jost A, Vigier B, Prépin J, et al. Studies on sex differentiation in mammals. Recent Prog Horm Res. 1973;29:1–41. doi: 10.1016/b978-0-12-571129-6.50004-x
- Karaismailoğlu S, Erdem A. The effects of prenatal sex steroid hormones on sexual differentiation of the brain. J Turk Ger Gynecol Assoc. 2013;14(3):163–167. doi: 10.5152/jtgga.2013.86836
- Word RA, George FW, Wilson JD, et al. Testosterone synthesis and adenylate cyclase activity in the early human fetal testis appear to be independent of human chorionic gonadotropin control. J Clin Endocrinol Metab. 1989;69(1):204–208. doi: 10.1210/jcem-69-1-204
- Braun AE, Mitchel OR, Gonzalez TL, et al. Sex at the interface: the origin and impact of sex differences in the developing human placenta. Biol Sex Differ. 2022;13(1):50. EDN: ERCXLM doi: 10.1186/s13293-022-00459-7
- van de Beek C, van Goozen SH, Buitelaar JK, et al. Prenatal sex hormones (maternal and amniotic fluid) and gender-related play behavior in 13-month-old Infants. Arch Sex Behav. 2009;38(1):6–15. EDN: UUCTRE doi: 10.1007/s10508-007-9291-z
- Inkster AM, Fernández-Boyano I, Robinson WP. Sex differences are here to stay: relevance to prenatal care. J Clin Med. 2021;10(13):3000. EDN: KWRJLE doi: 10.3390/jcm10133000
- O’Shaughnessy PJ, Antignac JP, Le Bizec B, et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 2019;17(2):e3000002. doi: 10.1371/journal.pbio.3000002
- Yang D, Dai F, Yuan M, et al. Role of transforming growth factor-β1 in regulating fetal-maternal immune tolerance in normal and pathological pregnancy. Front Immunol. 2021;12:689181. EDN: RYOJER doi: 10.3389/fimmu.2021.689181
- Yu L, Kuang LY, He F, et al. The role and molecular mechanism of long nocoding RNA-MEG3 in the pathogenesis of preeclampsia. Reprod Sci. 2018;25(12):1619–1628. EDN: HZWTFX doi: 10.1177/1933719117749753
- Darmochwal-Kolarz D, Michalak M, Kolarz B, et al. The role of interleukin-17, interleukin-23, and transforming growth factor-β in pregnancy complicated by placental insufficiency. Biomed Res Int. 2017;2017:6904325. doi: 10.1155/2017/6904325
- Beckett EM, Astapova O, Steckler TL, et al. Developmental programing: impact of testosterone on placental differentiation. Reproduction. 2014;148(2):199–209. doi: 10.1530/REP-14-0055
- Gopalakrishnan K, Mishra JS, Chinnathambi V, et al. Elevated testosterone reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant rats. Hypertension. 2016;67(3):630–639. doi: 10.1161/HYPERTENSIONAHA.115.06946
- Steier JA, Ulstein M, Myking OL. Human chorionic gonadotropin and testosterone in normal and preeclamptic pregnancies in relation to fetal sex. Obstet Gynecol. 2002;100(3):552–556. doi: 10.1016/s0029-7844(02)02088-4
- Sathishkumar K, Balakrishnan M, Chinnathambi V, et al. Fetal sex-related dysregulation in testosterone production and their receptor expression in the human placenta with preeclampsia. J Perinatol. 2012;32(5):328–335. doi: 10.1038/jp.2011.101
- Nikolayenkov IP, Kuzminykh TU, Tarasova MA, et al. Features of the course of pregnancy in women with polycystic ovary syndrome. Journal of Obstetrics and Women’s Diseases. 2020;69(5):105–112. EDN: HNEEAT doi: 10.17816/JOWD695105-112
- Sun M, Maliqueo M, Benrick A, et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring. Am J Physiol Endocrinol Metab. 2012;303(11):E1373–E1385. doi: 10.1152/ajpendo.00421.2012
- Stark MJ, Wright IM, Clifton VL. Sex-specific alterations in placental 11betahydroxysteroid dehydrogenase 2 activity and early postnatal clinical course following antenatal betamethasone. Am J Physiol Regul Integr Comp Physiol. 2009;297(2):R510–R514. doi: 10.1152/ajpregu.00175.2009
- Saif Z, Hodyl NA, Hobbs E, et al. The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma. Placenta. 2014;35(4):260–268. doi: 10.1016/j.placenta.2014.01.012
- Voegtline KM, Costigan KA, Kivlighan KT, et al. Sex-specific associations of maternal prenatal testosterone levels with birth weight and weight gain in infancy. J Dev Orig Health Dis. 2013;4(4):280–284. doi: 10.1017/S2040174413000135
- Nikolaenkov IP, Potin VV, Tarasova MA. Anti-Mullerian hormone and polycystic ovary syndrome. Journal of Obstetrics and Women’s Diseases. 2013;62(6):55–61. EDN: RXRULB doi: 10.17816/JOWD62655-61
- Pimentel C, Solene D, Frédérique J, et al. What are the predictive factors for preeclampsia in oocyte recipients? J Hum Reprod Sci. 2019;12(4):327–333. doi: 10.4103/jhrs.JHRS_43_19
- Doan TNA, Akison LK, Bianco-Miotto T. Epigenetic mechanisms responsible for the transgenerational inheritance of intrauterine growth restriction phenotypes. Front Endocrinol (Lausanne). 2022;13:838737. EDN: OTIISR doi: 10.3389/fendo.2022.838737
- Zubzhitskaya LB, Shapovalova YA, Lavrova OV, et al. Placenta of normal women and of patients with bronchial asthma of various degrees of severity (immunohistochemical and histological study). Morphology. 2014;145(2):46–52. doi: 10.17816/morph.398752
- Shapovalova EA, Zubzhitskaya LB, Lavrova OV, et al. Features of a course of pregnancy at bronchial asthma and influence of immunological deposits on a placentary barrier. Journal of Obstetrics and Women’s Diseases. 2015;64(2):69–75. EDN: TTYWGJ doi: 10.17816/JOWD64269-75
- Zubzhitskaya LB, Shapovalova EA, Arzhanova ON, et al. Status of placental barrier of women at the influence of exogenous and endogenous factors. Journal of Obstetrics and Women’s Diseases. 2015;64(5):36–47. EDN: VKFXYL doi: 10.17816/JOWD64536-47
- Dymarskaya YR, Zubzhitskaya LB, Lavrova OV, et al. Expression of cd35 and cd57 in placenta of women with asthma. Journal of Obstetrics and Women’s Diseases. 2017;66(3):49–59. EDN: YZBNQF doi: 10.17816/JOWD66349-59
Supplementary files
