The use of optical coherence tomography angiography in differential diagnosis of conjunctival melanocytic tumors

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Optical coherence tomography angiography (OCTA) is a noninvasive method of eye microcirculation evaluation. Few reports are published on the use of OCTA for anterior segment (AS) vessels analysis in healthy eyes and in conjunctival tumors, and their vascular characteristics are still not thoroughly investigated. These questions are of importance, as it is known that tumor’s vasculature is indicative of the patient’s vital prognosis.

AIM: The aim of our study was to investigate the potential of AS-OCTA in evaluation of normal conjunctival vessels architecture as well as that in melanocytic neoplasms.

MATERIALS AND METHODS: 20 healthy volunteers (20 eyes) and 20 patients (20 eyes) with conjunctival nevi and melanomas were examined. AS optical coherence tomography (OCT) and AS-OCTA were performed. Scan analysis included qualitative assessment (vessels pattern, lumen, tortuosity) and quantitative assessment [perfusion density (PD, %) index]. Mean (MPD), maximum (MaxPD) and perifocal PD (PPD) were determined.

RESULTS: In normal group, predominantly radial pattern of the vessels was revealed, their caliber remaining the same along their entire length; larger vessels were more often discovered in deep conjunctival layers. The lowest PD value (29.9%) was registered in the inferior conjunctival segment, and the highest (36.7%) — in the nasal one. In the conjunctival tumors’ area tortuosity of the vessels, uneven vessels’ caliber along their length, and increase in the PD value were observed. Melanomas were characterized by an increase in the “lace-like pattern” and by presence of “confluent pattern” zones; MaxPD value was more than 50%. Significant difference was found between MPD values of normal conjunctiva and MPD values in conjunctival melanoma.

CONCLUSIONS: AS-OCTA is an informative method for the visualization of vessels in normal conjunctiva and in conjunctival tumors. If the tumor’s vessels are unevenly distributed, MaxPD should be measured.

Full Text

Restricted Access

About the authors

Tatiana N. Kiseleva

Helmholz National Medical Research Center of Eye Diseases

Email: tkisseleva@yandex.ru
ORCID iD: 0000-0002-9185-6407
SPIN-code: 5824-5991
Scopus Author ID: 7006275699

Dr. Sci. (Med.), professor, head of Ultrasound diagnostic Department

Russian Federation, Moscow

Svetlana V. Saakyan

Helmholz National Medical Research Center of Eye Diseases; A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: svsaakyan@yandex.ru
ORCID iD: 0000-0001-8591-428X
SPIN-code: 4783-9193
Scopus Author ID: 6602897459

corresponding member of the Russian Academy of Sciences, Dr. Sci. (Med.), professor

Russian Federation, Moscow; Moscow

Viktoriia V. Makukhina

Helmholz National Medical Research Center of Eye Diseases

Author for correspondence.
Email: makuhvik@mail.ru
ORCID iD: 0000-0002-6238-309X
SPIN-code: 6891-8162
Scopus Author ID: 57203354833

postgraduate student

Russian Federation, Moscow

Ksenia V. Lugovkina

Helmholz National Medical Research Center of Eye Diseases

Email: ksushalyg@mail.ru
ORCID iD: 0000-0002-3531-3846
SPIN-code: 9919-6167
Scopus Author ID: 57200173937

Cand. Sci. (Med.), senior research associate of Ultrasound diagnostic Department

Russian Federation, Moscow

Sergey V. Milash

Helmholz National Medical Research Center of Eye Diseases

Email: sergey_milash@yahoo.com
ORCID iD: 0000-0002-3553-9896
SPIN-code: 5224-4319
Scopus Author ID: 55924655900

Cand. Sci. (Med.), research associate of Department of refraction pathology, binocular vision and ophthalmoergonomics

Russian Federation, Moscow

Nelly F. Musova

Helmholz National Medical Research Center of Eye Diseases

Email: nelly_smile@mail.ru
ORCID iD: 0000-0003-0908-6018

ophthalmologist of the Oncology Department of the outpatient clinic

Russian Federation, Moscow

Andrey A. Zharov

Helmholz National Medical Research Center of Eye Diseases

Email: and-zarus@yandex.ru
ORCID iD: 0000-0003-1103-6570
SPIN-code: 7272-3765
Scopus Author ID: 58023722600

research associate of Pathomorphology Department

Russian Federation, Moscow

References

  1. Saakyan SV, Tatskov RA, Ivanova OA, et al. Surgical treatment of epibulbar malformations. Ophthalmology in Russia. 2019;16(3): 289–295. (In Russ.) doi: 10.18008/1816-5095-2019-3-289-295
  2. Shields CL, Alset AE, Boal NS, et al. Conjunctival tumors in 5002 cases. Comparative analysis of benign versus malignant counterparts. The 2016 James D. Allen Lecture. Am J Ophthalmol. 2017;173:106–133. doi: 10.1016/j.ajo.2016.09.034
  3. Ivanova OA. Klinicheskie osobennosti nevusov konjyunktivy v vozrastnom aspekte i optimizatsiya ikh rannego lecheniya [dissertation]. Moscow, 2011. 107 p. (In Russ.)
  4. Neroev BB, KiselevoĬ TN, editors. Ultrazvukovye issledovaniya v oftalmologii: Rukovodstvo dlya vrachei. 1-e izd. Moscow: IKAR, 2019. 322 p. (In Russ.)
  5. Zaharova MA, Kuroedov AV. Optic coherent tomography — technology which became a reality. Russian Journal of Clinical Ophthalmology. 2015;(4):204–211. (In Russ.)
  6. Konopińska J, Lisowski Ł, Wasiluk E, et al. The effectiveness of ultrasound biomicroscopic and anterior segment optical coherence tomography in the assessment of anterior segment tumors: long-term follow-up. J Ophthalmol. 2020;2020:9053737. doi: 10.1155/2020/9053737
  7. Skalet AH, Li Y, Lu CD, et al. Optical coherence tomography angiography characteristics of iris melanocytic tumors. Ophthalmology. 2017;124(2):197–204. doi: 10.1016/j.ophtha.2016.10.003
  8. Amiryan AG, Saakyan SV. Prognostic factors for uveal melanoma. The Russian Annals of Ophthalmology. 2015;(1):9095. (In Russ.) doi: 10.17116/oftalma2015131190-94
  9. Allegrini D, Montesano G, Pece A. Optical coherence tomography angiography of iris nevus: a case report. Case Rep Ophthalmol. 2016;7(3):172–178. doi: 10.1159/000450572
  10. Kiseleva TN, Kotelin VI, Losanova OA, Lugovkina KV. Noninvasive methods assessment blood flow in anterior segment and clinical application perspective. Ophthalmology in Russia. 2017;14(4):283–290. (In Russ.) doi: 10.18008/1816-5095-2017-4-283-290
  11. Lumbroso B, Huang D, Jia Y, et al. Clinical guide to angio-OCT: non invasive, dyeless OCT Angiography. New Delhi: Jaypee Brothers, Medical Publishers, 2014.
  12. Lee WD, Devarajan K, Chua J, et al. Optical coherence tomography angiography for the anterior segment. Eye Vis (Lond). 2019;6:4. doi: 10.1186/s40662-019-0129-2
  13. Akagi T, Uji A, Huang AS, et al. Conjunctival and intrascleral vasculatures assessed using anterior segment optical coherence tomo graphy angiography in normal eyes. Am J Ophthalmol. 2018;196:1–9. doi: 10.1016/j.ajo.2018.08.009
  14. Binotti WW, Mills H, Nosé RM, et al. Anterior segment optical coherence tomography angiography in the assessment of ocular surface lesions. Ocul Surf. 2021;22:86–93. doi: 10.1016/j.jtos.2021.07.009
  15. Aicher NT, Nagahori K, Inoue M, et al. Vascular density of the anterior segment of the eye determined by optical coherence tomography angiography and slit-lamp photography. Ophthalmic Res. 2020;63(6):572–579. doi: 10.1159/000506953
  16. Mehta N, Liu K, Alibhai AY, et al. Impact of binarization thresholding and brightness/contrast adjustment methodology on optical coherence tomography angiography image quantification. Am J Ophthalmol. 2019;205:54–65. doi: 10.1016/j.ajo.2019.03.008
  17. Nampei K, Oie Y, Kiritoshi S, et al. Comparison of ocular surface squamous neoplasia and pterygium using anterior segment optical coherence tomography angiography. Am J Ophthalmol Case Rep. 2020;20:100902. doi: 10.1016/j.ajoc.2020.100902
  18. Liu Z, Wang H, Jiang H, et al. Quantitative analysis of conjunctival microvasculature imaged using optical coherence tomography angio graphy. Eye Vis (Lond). 2019;6:5. doi: 10.1186/s40662-019-0130-9
  19. Kiseleva TN, Saakyan SV, Makukhina VV, et al. Use of optical coherence tomography angiography in assessment in conjunctival vascular architecture in health and pathology. The Russian Annals of Ophthalmo logy. 2022;138(6):32–42. (In Russ.) doi: 10.17116/oftalma202213806132
  20. Ivanova OA, Saakyan SV. An experience of using optical coherence tomography in the complex diagnosis of epibulbar tumors. Russian Ophthalmological Journal. 2011;4(1):77–79. (In Russ.)
  21. Brouwer NJ, Marinkovic M, Bleeker JC, et al. Anterior segment OCTA of melanocytic lesions of the conjunctiva and iris. Am J Ophthalmol. 2021;222:137–147. doi: 10.1016/j.ajo.2020.09.009
  22. Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi: 10.1016/j.preteyeres.2017.11.003
  23. Sampson DM, Dubis AM, Chen FK, et al. Towards standardizing retinal optical coherence tomography angiography: a review. Light Sci Appl. 2022;11(1):63. doi: 10.1038/s41377-022-00740-9
  24. Iovino C, Peiretti E, Braghiroli M, et al. Imaging of iris vasculature: current limitations and future perspective. Eye (Lond). 2022;36(5):930–940. doi: 10.1038/s41433-021-01809-2
  25. Foo VHX, Ke M, Tan CQL, et al. Anterior segment optical coherence tomography angiography assessment of corneal vascularisation after combined fine-needle diathermy with subconjunctival ranibizumab: a pilot study. Adv Ther. 2021;38(8):4333–4343. doi: 10.1007/s12325-021-01849-w

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Normal conjunctiva: a — photoregistration; b — optical coherence tomography (1 — conjunctival epithelium, 2 — connective tissue); c — optical coherence tomography-angiography, conjunctival vessels are visualized as linear structures extending radially (arrows), few tortuous vessels are observed. Vessel diameter remains the same along the entire length

Download (147KB)
3. Fig. 2. Compound conjunctival nevus: a — photoregistration; b — optical coherence tomography (1 — protruding isoreflective tumor with distinct borders and multiple cavities inside, 2 — conjunctival epithelium is unevenly thinned); с — optical coherence tomography-angiography, multiple intrinsic vessels of various diameter and variety of course impairment are observed, including areas of “lace-like pattern” (arrows)

Download (166KB)
4. Fig. 3. Blue conjunctival nevus: a — photoregistration; b — optical coherence tomography; c — optical coherence tomography-angiography. 1 — Isoreflective subepithelial neoplasm of homogenous structure; conjunctival epithelium is intact; 2 — signal attenuation; 3 — hurdle of vessel visualization in the area of the neoplasm; 4 — feeding vessels are visible

Download (150KB)
5. Fig. 4. Conjunctival melanoma: a — photoregistration; b — optical coherence tomography (1 — hyperreflective tumor containing hyporeflective zone, supposedly, zone of active tumor growth; 2 — conjunctival epithelium is partly absent); c — optical coherence tomography-angiography, chaotically oriented intrinsic vessels of various caliber with multiple anastomoses of various appearance, including “lace-like pattern” (arrows)

Download (164KB)
6. Fig. 5. Conjunctival melanoma, “confluent pattern” area: a — photoregistration; b — optical coherence tomography, hyperreflective tumor, conjunctival epithelium is partially absent (arrow); c — optical coherence tomography-angiography, zone of dense distribution of vessels, visualization of intervascular spaces is difficult — “confluent pattern” area (arrow)

Download (173KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies