Modern principles of the diabetic macular edema management

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Diabetes mellitus and diabetic retinal lesions are a global challenge for healthcare systems and one of the leading causes of severe vision loss among the working age population. Retinal laser coagulation remained the standard of therapy and the only possible treatment for diabetic macular edema (DME) in the 80-90s of the last century. The introduction of anti-VEGF therapy and glucocorticoids into the wide practice has significantly expanded the range of possibilities of DME treatment, allowing not only to stabilize patients’ vision, but also to improve it. The analyses of the large randomized clinical trials results are made and presented in this article, that highlight the basic principles of the contemporary DME treatment. This information is intended to help the ophthalmologist to develop the most optimal approach to treatment, considering the individual characteristics of each patient and the “evidence-based” efficacy and safety data of different methods.

Full Text

Restricted Access

About the authors

Natalya K. Mazurina

Posterior eye segment diagnostic and surgery center

Author for correspondence.
Email: mazuraforever@mail.ru
ORCID iD: 0000-0002-5499-1773

PhD, Head of Laserphotocoagulation and Fluorescein Angiography Unit, Deputy Director

Russian Federation, Moscow

Georgiy E. Stolyarenko

Posterior eye segment diagnostic and surgery center

Email: retina@retina.ru

PhD, Professor, Vitreoretinal Surgeon, CEO

Russian Federation, Moscow

References

  1. International Diabetes Federation. IDF Diabetes Atlas. Ninth edition, 2019. Available from: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/159-idf-diabetes-atlas-ninth-edition-2019.html.
  2. Шестакова М.В., Викулова О.К., Железнякова А.В., и др. Эпидемиология сахарного диабета в Российской Федерации: что изменилось за последнее десятилетие? // Терапевтический архив. – 2019. – Т. 91. – № 10. – С. 4–13. [Shestakova MV, Vikulova OK, Zheleznyakova AV, et al. Diabetes epidemiology in Russia: what has changed over the decade? Ther Arch. 2019;91(10): 4-13. (In Russ.)]. https://doi.org/10.26442/00403660.2019.10. 000364.
  3. Дедов И.И., Шестакова М.В., Галстян Г.Р., и др. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION) // Сахарный диабет. – 2016. – Т. 19. – № 2. – С. 104–112. [Dedov II, Shestakova MV, Galstyan GR, et al. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes Mellitus. 2016;19(2): 104-112. (In Russ.)]. https://doi.org/10.14341/DM2004116-17.
  4. Klein R, Klein BE, Moss SE, Cruickshanks KJ. The Wisconsin epidemiologic study of diabetic retinopathy XV: the long-term incidence of macular edema. Ophthalmology. 1995;102(1):7-16. https://doi.org/10.1016/S0161-6420(95)31052-4.
  5. Klein R, Moss SE, Klein BE. The Wisconsin epidemiologic study of diabetic retinopathy: xi. the incidence of macular edema. Ophthalmology. 1989;96(10):1501-1510. https://doi.org/10.1016/s0161-6420(89)32699-6.
  6. Klein R, Klein BE, Moss SE et al. The Wisconsin epidemiologic study of diabetic retinopathy: IV. Diabetic macular edema. Ophthalmology. 1984;91(12):1464-1474. https://doi.org/10.1016/s0161-6420(84)34102-1.
  7. Klein R, Klein BE, Moss SE, Cruickshanks KJ. The Wisconsin epidemiologic study of diabetic retinopathy: XVII: the 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology. 1998;105(10): 1801-1815. https://doi.org/10.1016/S0161-6420(98)91020-X.
  8. Klein R, Knudtson MD, Lee KE, et al. The Wisconsin epidemiologic study of diabetic retinopathy XXIII: The twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009;116(3):497-503. https://doi.org/10.1016/j.ophtha.2008.10.016.
  9. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977-986. https://doi.org/10.1056/NEJM199309303291401.
  10. The Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes treatment on the progression of diabetic retinopathy in insulin-dependent diabetes mellitus. Arch Ophthalmol. 1995;113(1):36-51. https://doi.org/10.1001/archopht. 1995.01100010038019.
  11. Intensive Blood-Glucose Control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). UK prospective diabetes study (UKPDS) group. Lancet. 1998;352(9131):837-853. https://doi.org/10.1016/S0140-6736(98)07019-6.
  12. White NH, Sun W, Cleary PA, et al. Effect of prior intensive therapy in type 1 diabetes on 10-year progression of retinopathy in the DCCT/EDIC: comparison of adults and adolescents. Diabetes. 2010;59(5):1244-1253. https://doi.org/10.2337/db09-1216.
  13. The Diabetes Control and Complications Trial / Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6): 381-389. https://doi.org/10.1056/NEJM200002103420603.
  14. The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545-2559. https://doi.org/10.1056/NEJMoa0802743.
  15. Klein BE, Moss SE, Klein BE, Surawicz TS. The Wisconsin epidemiologic study of diabetic retinopathy: XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology. 1991;98(8):1261-1265. https://doi.org/10.1016/s0161-6420(91) 32145-6.
  16. Klein BE, Myers CE, Howard KP, Klein R. Serum lipids and proliferative diabetic retinopathy and macular edema in persons with long-term type 1 diabetes mellitus: the Wisconsin epidemiologic study of diabetic retinopathy. JAMA Ophthalmol. 2015;133(5): 503-510. https://doi.org/10.1001/jamaophthalmol.2014.5108.
  17. Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmic. 1985;103(12):1796-1806 https://doi.org/10.1001/archopht. 1985.01050120030015.
  18. Lee CM, Olk RJ. Modified grid laser photocoagulation for diffuse diabetic macular edema: long-term visual results. Ophthalmology. 1991;98(10):1594-1602. https://doi.org/10.1016/s0161-6420(91)32082-7.
  19. Ladas ID, Theodossiadis GP. Long-term effectiveness of modified grid laser photocoagulation for diffuse diabetic macular edema. Acta Ophthalmol (Copenh). 1993;71(3):393-397. https://doi.org/10.1111/j.1755-3768.1993.tb07154.x.
  20. Degenring RF, Hugger P, Sauder G, Jonas JB. [Grid laser photocoagulation in diffuse diabetic macular edema. (In German)]. Klin Monbl Augenheilkd. 2004;221(1):48-51. https://doi.org/ 10.1055/s-2003-812638.
  21. Wilkinson CP, Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677-1682. https://doi.org/10.1016/S0161-6420(03)00475-5.
  22. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS Report number 12. Early treatment diabetic retinopathy study research group. Ophthalmology. 1991;98(5):823-833. https://doi.org/10.1016/S0161-6420(13)38014-2.
  23. Ip MS, Domalpally A, Hopkins JJ, et al. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol. 2012;130(9):1145-1152. https://doi.org/10.1001/archophthalmol.2012.1043.
  24. Staurenghi G, Feltgen N, Arnold JJ, et al. Impact of baseline diabetic retinopathy severity scale scores on visual outcomes in the VIVID-DME and VISTA-DME studies. Br J Ophthalmol. 2018;102(7):954-958. https://doi.org/10.1136/bjophthalmol- 2017-310664.
  25. Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The restore study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118(4): 615-625. https://doi.org/10.1016/j.ophtha.2011.01.031.
  26. Korobelnik JF, Do DV, Schmidt-Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121(11):2247-2254. https://doi.org/10.1016/j.ophtha. 2014.05.006.
  27. Brown DM, Schmidt-Erfurth U, Do DV, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015;122(10):2044-2052. https://doi.org/10.1016/j.ophtha.2015.06.017.
  28. Heier JS, Korobelnik JF, Brown DM, et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology. 2016;123(11):2376-2385. https://doi.org/10.1016/j.ophtha.2016.07.032.
  29. Wykoff CC, Eichenbaum DA, Roth DB, et al. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmology Retina. 2018;2(10):997-1009. https://doi.org/10.1016/ j.oret.2018.06.005.
  30. Writing Committee for the Diabetic Retinopathy Clinical Research Network; Gross JG, Glassman AR, Jampol LM, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy. A randomized clinical trial. JAMA. 2015;314(20):2137-2146. https://doi.org/10.1001/jama.2015. 15217.
  31. Gross JG, Glassman AR. A novel treatment for proliferative diabetic retinopathy: anti-vascular endothelial growth factor therapy. JAMA Ophthalmol. 2016;134(1):13-14. https://doi.org/10.1001/jamaophthalmol.2015.5079.
  32. Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy. A randomized clinical trial. JAMA Ophthalmol. 2018;136(10):1138-1148. https://doi.org/10.1001/jamaophthalmol.2018.3255.
  33. Bressler SB, Liu D, Glassman AR, et al. Change in diabetic retinopathy through 2 years secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab. JAMA Ophthalmol. 2017;135(6):558-568. https://doi.org/10.1001/jamaophthalmol.2017.0821.
  34. Lang GE, Berta A, Eldem BM, et al. Two-year safety and efficacy of ranibizumab 0.5 mg in diabetic macular edema: interim analysis of the restore extension study. Ophthalmology. 2013;120(10): 2004-2012. https://doi.org/10.1016/j.ophtha.2013.02.019.
  35. Elman MJ, Ayala A, Bressler NM, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results. Ophthalmology. 2015;122(2): 375-381. https://doi.org/10.1016/j.ophtha.2014.08.047.
  36. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;372(13):1193-1203. https://doi.org/10.1056/NEJMoa1414264.
  37. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123(6):1351-1359. https://doi.org/10.1016/j.ophtha.2016.02.022.
  38. Jampol LM, Glassman AR, Bressler NM, et al. Anti-vascular endothelial growth factor comparative effectiveness trial for diabetic macular edema: additional efficacy post hoc analyses of a randomized clinical trial. JAMA Ophthalmol. 2016; 134(12):1429-1434. https://doi.org/10.1001/jamaophthalmol. 2016.3698.
  39. Evans M, Crane M, Katz TA, et al. Effect of baseline haemoglobin A1c and on-treatment blood pressure on outcomes in the VIVID-DME and VISTA-DME Studies. European Association for the Study of Diabetes; 2015. Oral presentation 235. Available from: https://www.easd.org/virtualmeeting/home.html#!resources/effects-of-baseline-haemoglobin-a1c-and-on-treatment-blood-pressure-on-outcomes-in-the-vivid-dme-and-vista-dme-studies-3.
  40. Singh RP, Silva FQ, Gibson A, et al. Difference in treatment effect between intravitreal aflibercept injection and laser by baseline factors in diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina. 2019;50(3):167-173. https://doi.org/10.3928/23258160-20190301-06.
  41. Baker CW, Glassman AR, Beaulieu WT, et al. Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. JAMA. 2019;321(19):1880-1894. https://doi.org/10.1001/jama.2019.5790.
  42. Glassman AR, Baker CW, Beaulieu WT, et al. Assessment of the DRCR retina network approach to management with initial observation for eyes with center-involved diabetic macular edema and good visual acuity: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 2020;138(4):341-349. https://doi.org/10.1001/jamaophthalmol.2019.6035.
  43. Офтальмология: клинические рекомендации / под ред. В.В. Нероева. – М.: ГЭОТАР-Медиа, 2019. – 487 с. [Ophthalmology: clinical recommendations. Ed. by V.V. Neroev. Moscow: GEOTAR-Media; 2019. 487 р. (In Russ.)]
  44. Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for management of diabetic macular edema by the European society of retina specialists (EURETINA). Ophthalmologica. 2017;237(4):185-222. https://doi.org/10.1159/000458539.
  45. American Academy of Ophthalmology. The Retina / Vitreous Preferred Practice Pattern Panel. Diabetic Retinopathy Preferred Practice Pattern (PPP) guidelines. 2019. Available from: https://www.aao.org/preferred-practice-pattern/diabetic-retinopathy-ppp.
  46. International Council of Ophthalmology. ICO Guidelines for Diabetic Eye Care. San Francisco, California; 2017. Available from: http://www.icoph.org/downloads/ICOGuidelinesforDiabeticEyeCare.pdf.
  47. Jonas JB, Söfker A. Intraocular injection of crystalline cortisone as adjunctive treatment of diabetic macular edema. Am J Ophthalmol. 2001;132(3):425-427. https://doi.org/10.1016/s0002-9394(01)01010-8.
  48. Boyer DS, Yoon YH, Belfort R, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10): 1904-1914. https://doi.org/10.1016/j.ophtha.2014.04.024.
  49. Bressler NM, Edwards AR, Beck RW, et al. Exploratory analysis of diabetic retinopathy progression through 3 years in a randomized clinical trial that compares intravitreal triamcinolone acetonide with focal/grid photocoagulation. Arch Ophthalmol. 2009;127(12):1566-1571. https://doi.org/10.1001/archophthalmol.2009.308.
  50. Bressler SB, Qin H, Melia M, et al. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013;131(8):1033-1040. https://doi.org/10.1001/jamaophthalmol.2013.4154.
  51. Wykoff CC, Chakravarthy U, Campochiaro PA, et al. Long-term effects of intravitreal 0.19 mg fluocinolone acetonide implant on progression and regression of diabetic retinopathy. Ophthalmology. 2017;124(4):440-449. https://doi.org/10.1016/j.ophtha.2016.11.034.
  52. Querques L, Parravano M, Sacconi R, et al. Ischemic index changes in diabetic retinopathy after intravitreal dexamethasone implant using ultra-widefield fluorescein angiography: a pilot study. Acta Diabetol. 2017;54(8):769-773. https://doi.org/10.1007/s00592-017-1010-1.
  53. Iglicki M, Zur D, Busch C, et al. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the ‘DR-Pro-DEX Study’. Acta Diabetol. 2018;55(6): 541-547. https://doi.org/10.1007/s00592-018-1117-z.
  54. Maturi RK, Glassman AR, Liu D, et al. Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema. A DRCR network phase 2 randomized clinical trial. JAMA Ophthalmol. 2018;136(1):29-38. https://doi.org/10.1001/jamaophthalmol.2017.4914.
  55. Государственный реестр лекарственных средств. Инструкция по медицинскому применению лекарственного препарата Озурдекс ЛП 001913–231112 от 2019 г. [State register of medicines. Instruktsiya po meditsinskomu primeneniyu lekarstvennogo preparata Ozurdeks LP 001913-231112 ot 2019 g. (In Russ.)]. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=107f9b0a-f53c-422a-ae11-03ad1ad7c3dc&t=07.03.2020. Ссылка активна на 01.04.2020.
  56. Государственный реестр лекарственных средств. Инструкция по медицинскому применению лекарственного препарата Эйлеа ЛП-003544 от 2019 г. [State register of medicines. Instruktsiya po meditsinskomu primeneniyu lekarstvennogo preparata Eylea LP-003544 ot 2019 g. (In Russ.)]. Доступно по: https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR=&lf=&TradeNmR=%d0 %ad%d0 %99 %d0 %9b%d0 %95 %d0 %90&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0&isND=–1®type=1&pageSize=10&order=RegDate&orderType=desc&pageNum=1. Ссылка активна на 01.04.2020.
  57. Государственный реестр лекарственных средств. Инструкция по медицинскому применению лекарственного препарата Луцентис ЛСР-004567/08 от 2019 г. [State register of medicines. Instruktsiya po meditsinskomu primeneniyu lekarstvennogo preparata Lutsentis LSR-004567/08 ot 2019 g. (In Russ.)]. Доступно по: https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR=&lf=&TradeNmR=%u041b%u0443%u0446 %u0435%u043d%u0442%u0438%u0441&OwnerName=&MnfOrg=&MnfOrgCountry =&isfs=0&isND=-1®type=1&pageSize=10&order=RegDate&orderType=desc&pageNum=1. Ссылка активна на 01.04.2020. RegNumber=&MnnR=&lf=&TradeNmR=%d0%ad%d0%99%d0%9b%d0%95%d0%90&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0&isND=–1®type=1&pageSize=10&order=RegDate&orderType=desc&pageNum=1. Ссылка активна на 01.04.2020.
  58. Государственный реестр лекарственных средств. Инструкция по медицинскому применению лекарственного препарата Луцентис ЛСР-004567/08 от 2019 г. [State register of medicines. Instruktsiya po meditsinskomu primeneniyu lekarstvennogo preparata Lutsentis LSR-004567/08 ot 2019 g. (In Russ.)]. Доступно по: https://grls. rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR =&lf=&TradeNmR=%u041b%u0443%u0446%u0435%u043d%u0442%u0438%u0441& OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0&isND=–1®type=1&pageSize=10&order=RegDate&orderType=desc&pageNum=1. Ссылка активна на 01.04.2020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. VIVID/VISTA (148 weeks follow-up): A – mean change in best-corrected visual acuity (BCVA) ETDRS letters; B – mean change in central subfield thickness (CST). a In “2q8” group intravitreal aflibercept injections (IAI) were performed every 8 weeks after first 5 monthly injections (n = 135 in VIVID, n = 151 in VISTA). b “Laser” group included cases that were receiving intravitreal aflibercept injections (IAI) in “as needed” regimen (pro re nata, PRN) during the 3rd year (n = 132 in VIVID, in VISTA n = 154). Results obtained after “rescue therapy” were not considered in both groups. *p < 0.0001 **p < 0.0,0001

Download (212KB)
3. Fig. 2. VIVID/VISTA. Proportion of patients with ≥2-step DR (diabetic retinopathy) improvement in DRSS score (26–28). а In “2q8” group aflibercept intravitreal aflibercept injections were performed every 8 weeks after first 5 monthly injections (n = 135 in VIVID, n = 151 in VISTA). b “Laser” group included cases that were receiving intravitreal aflibercept injections (IAI) in “as needed” regimen (pro re nata, PRN) during the 3rd year (n = 132 in VIVID, in VISTA n = 154). Results obtained after “rescue therapy” were not considered in both groups. *p < 0.01 in VIVID, *p < 0.001 in VISTA, **p < 0.0001 in both studies, ***p < 0.0001 in VIVID, p < 0.052 in VISTA

Download (51KB)
4. Fig. 3. Protocol T DRCR net. (2 years follow-up): A – Mean change in central subfield thickness (CST) in aflibercept and ranibizumab groups in patients with baseline visual acuity 20/32–20/40; B — mean change in best-corrected visual acuity (BCVA) in cohort with baseline visual acuity of 20/32 to 20/40. Number of eyes was 195–244 in aflibercept group and 188–218 in ranibizumab group at different points of follow-up

Download (125KB)
5. Fig. 4. Protocol T DRCR net. (2 years follow-up). Mean change in best-corrected visual acuity (BCVA) in cohort with baseline visual acuity 20/50 or worse. Number of eyes was 195–244 in aflibercept group and 188–218 in ranibizumab group at different points of follow-up

Download (75KB)

Copyright (c) 2020 Mazurina N.K., Stolyarenko G.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies