Differential diagnosis algorithms of сentral serous chorioretinopathy and adult-onset vitelliform dystrophies

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Purpose. To optimize the differential diagnosis of chronic central serous chorioretinopathy (CSCR) and of adult-onset vitelliform dystrophies (VD). Research objectives. On the multimodal diagnosis basis, to investigate signs characteristic for VD and chronic CSCR using mathematic modeling, to elaborate algorithms of their differential diagnosis in settings of differently equipped clinics.

Materials and methods. 61 patient (90 eyes) with long-term neuroepithelial detachments (NEDs) were included in the study. In all patients, the disease history was collected, including the family history; all patients underwent a standard ophthalmologic examination: visual acuity testing including best corrected visual acuity (BCVA), biomicroophthalmoscopy, fundus photography, spectral domain optical coherence tomography (SD-OCT) and optical coherence tomography angiography (OCT-A), short-wavelength autofluorescence (SW-AF), fluorescein angiography (FA), indocyanine green angiography (ICGA). Patients were divided into two groups: with vitelliform dystrophies — 30 patients (30 eyes), and with CSCR — 31 patients (31 eyes). To estimate the probability of disease detection, binary logistic regression method was used.

Results. Diagnostic predictors found in both groups were scrutinized; mathematical models for estimating the probability of disease detection were obtained. Differential diagnostics algorithms have been developed taking into account the resulting formulas for calculating the probability of disease detection, including criteria of different examination combinations: SD-OCT (area under ROC curve 0.946); BAF (area under ROC curve 0.955), SD-OCT and SW-AF (area under ROC curve 0.980); SW-AF, FA and ICGA (area under ROC curve 0.989).

Conclusion. The obtained models make it possible to carry out differential diagnosis of vitelliform dystrophies and chronic CSCR in settings of differently equipped clinics.

Full Text

Restricted Access

About the authors

Nataliia V. Matcko

S. Fyodorov Eye Microsurgery Federal State Institution, the Saint Petersburg Branch; I.I. Mechnikov North-Western State Medical University

Author for correspondence.
Email: matsko.natalia@mail.ru
ORCID iD: 0000-0001-8909-9999
SPIN-code: 9790-4066

Ophthalmologist, S. Fyodorov Eye Microsurgery Federal State Institution, Saint Petersburg Branch, PhD Student, I.I. Mechnikov North-Western State Medical University

Russian Federation, St. Petersburg; St. Petersburg

Marina V. Gatsu

S. Fyodorov Eye Microsurgery Federal State Institution, the Saint Petersburg Branch; I.I. Mechnikov North-Western State Medical University

Email: m-gatsu@yandex.ru

Dr. Sci. (Med.), Deputy Director of Clinical Services, S. Fyodorov Eye Microsurgery Federal State Institution, the Saint Petersburg Branch, professor, I.I. Mechnikov North-Western State Medical University

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Мацко Н.В., Гацу М.В., Григорьева Н.Н. Вителлиформные изменения макулярной области, встречающиеся у взрослых пациентов // Офтальмологические ведомости. – 2019. – T. 12. – № 4. – С. 73–86. [Macko NV, Gacu MV, Grigor’eva NN. Vitelliform changes in the central retina occurring in adults. Opththalmology Journal. 2019;(4):73–86. (In Russ.)] https://doi.org/10.17816/OV18513
  2. Renner A, Tillack H, Kraus H, et al. Morphology and functional characreristics in adult vitelliform macular dystrophy. Retina. 2004;24(6):929–939. https://doi.org/10.1097/00006982-200412000-00014
  3. Meunier I, Manes G, Bocquet B, et al. Frequency and Clinical Pattern of Vitelliform Macular Dystrophy Caused by Mutations of Interphotoreceptor Matrix IMPG1 and IMPG2 Genes. Ophthalmology. 2014;121(12):2406–2414. https://doi.org/10.1016/j.ophtha.2014.06.028
  4. Barbazetto IA, Yannuzzi NA, Klais CM, et al. Pseudo-vitelliform macular detachment and cuticular drusen: exclusion of 6 candidate genes. Ophthalmic Genet. 2007;28(4):192–197. https://doi.org/10.1080/13816810701538596
  5. Jaouni T, Averbukh E, Burstyn-Cohen T, et al. Association of pattern dystrophy with an HTRA1 singlenucleotide polymorphism. Arch Ophthalmol. 2012;130(8):987–991. https://doi.org/10.1001/archophthalmol.2012.1483
  6. Wang M, Munch IC, Hasler PW, et al. Central serous chorioretinopathy. Acta Ophthalmol. 2008;86(2):126–145. https://doi.org/10.1111/j.1600-0420.2007.00889.x
  7. Дога А.В., Качалина Г.Ф., Клепинина О.Б. Центральная серозная хориоретинопатия: современные аспекты диагностики и лечения. – М.: Офтальмология; 2017. – C. 9. [Doga AV, Kachalina GF, Klepinina OB. Central’naja seroznaja horioretinopatija: sovremennye aspekty diagnostiki i lechenija. Moscow: Oftal’mologija; 2017. P. 9. (In Russ.)]
  8. Lee YS, Kim ES, Kim М, еt al. Atypical vitelliform macular dystrophy misdiagnosed as chronic central serous chorioretinopathy: case reports. BMC Ophthalmology. 2012;12:25. https://doi.org/10.1186/1471-2415-12-25
  9. Zatreanu L, Freund KB, Leong BCS, еt al. Serous macular detachment in best disease: A masquerade syndrome. Retina. 2020;40(8):1456–1470. https://doi.org/10.1097/IAE.0000000000002659
  10. Гацу М.В. Фотодинамическая терапия — метод выбора при лечении хронических форм центральной серозной хориоретинопатии // IV Всеросс. семинар-«круглый стол» «Макула-2010»: тезисы докладов. 21–23 мая 2010. – Ростов-на-Дону. – С. 427–429. [Gacu MV. Fotodinamicheskaja terapija – metod vybora pri lechenii hronicheskih form central’noj seroznoj horioretinopatii. IV Vseross. seminar-«kruglyi stol» «Makula-2010»: tezisy dokladov. 21–23 maya 2010. – Rostov-na-Donu, 2010. – P. 427–429. (In Russ.)]
  11. Балашевич Л.И., Гацу М.В., Искендерова Н.Г. Эффективность диодной субпороговой микроимпульсной лазеркоагуляции при лечении различных форм центральной серозной ретинопатии // IV Всеросс. семинар-«круглый стол» «Макула 2010»: тезисы докладов. 21–23 мая 2010. – Ростов-на-Дону. – С. 416–418. [Jeffektivnost’ diodnoj subporogovoj mikroimpul’snoj lazerkoaguljacii pri lechenii razlichnyh form central’noj seroznoj retinopatii // IV Vseross. seminar-«kruglyj stol» «Makula 2010»: tezisy dokladov. 21–23 maja 2010. – Rostov-na-Donu, 2010. – P. 416–418. (In Russ.)]
  12. Трухачева H.В. Медицинская статистика в медико-биологических исследованиях пакета Stasistica. – М.: ГЭОТАР-Медиа; 2013. – 379. с. [Truhacheva HV. Medicinskaja statistika v mediko-biologicheskih issledovanijah paketa Stasistica. Moscow: GJeOTAR-Media; 2013. 379. p. (In Russ.)]
  13. Гонта А. Характеристики изображения: контраст, динамический диапазон, резкость // Алгоритм безопасности. – 2006. – № 5. – С. 56–60. [Gonta A. Harakteristiki izobrazhenija: kontrast, dinamicheskij diapazon, rezkost’. Algoritm bezopasnosti. 2006;5:56–60. (In Russ.)]
  14. Ergun E. Photodynamic therapy with verteporfin in subfoveal choroidal neovascularization secondary to central serous chorioretinopathy. Arch Ophthalmol. 2004;122(1):37. https://doi.org/10.1001/archopht.122.1.37
  15. Гацу М.В. Эффективность фотодинамической терапии при хронических формах центральной серозной хориоретинопатии. Причины неудач // VI Всеросс. семинар- «круглый стол» «Макула-2014»: тезисы докладов. 16–18 мая 2014. – Ростов-на-Дону, 2014. – С. 139–155. [Gacu MV. Jeffektivnost’ fotodinamicheskoj terapii pri hronicheskih formah central’noj seroznoj horioretinopatii. Prichiny neudach // VI Vseross. seminar- «kruglyj stol» «Makula-2014»: tezisy dokladov. 16–18 maja 2014. Rostov-na-Donu, 2014. – P. 139–155. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Optical coherence tomograms of patients with adult-onset vitelliform dystrophy (a, c) and with chronic central serous chorioretinopathy (b, d). On all scans, detachment of the neuroepithelium is visible, deposition of optically dense deposits on the posterior surface of the neuroepithelium detachment, elongation of photoreceptor cells: a, b — without deposition of subretinal material along the retinal pigment epithelium; c, d — with deposition of subretinal material along the retinal pigment epithelium

Download (539KB)
3. Fig. 2. Example of multimodal diagnosis, patient with adult-onset foveomacular vitelliform dystrophy; a — fundus photo (in the macula, there is a light area less than 1 optic disc diameter, dyspigmentation area), b — short-wavelength autofluorescence (SW-AF) (hyperAF area, surrounded by a ring of hypoAF with a zone of confluent more intensive hyperAF under them, hyperAF brightness — 3, according to Grayscale); e — SD-OCT (NED, hyperreflective partially resorbed vitelliform material, massive subretinal deposits, diffusely enlarged choroidal vessels, hyperreflective dots in the subretinal space); f — OCT-A (shadow of the NED with subretinal material, rarefication of the choriocapillaris along the rand of the NED, in the areas of RPE atrophy; g — ICGA (blockage of the fluorescence in the vitelliform material’s deposition area, choroidal vessels are not enlarged); c, d — FA — arteriovenous phase and dye recirculation phase, respectively (blockage of the fluorescence by the vitelliform material, with subsequent dye accumulation in this area)

Download (737KB)
4. Fig. 3. Example of multimodal diagnosis, patient with chronic CSCR. a — fundus photo (in the macula, there is a light area about 1 optic disc diameter), b — short-wavelength autofluorescence (SW-AF) of the eye fundus (background hypoAF, central confluent hyperAF, diffuse hyper AF along the lower rand of the lesion, hyperAF brightness — 2, according to Grayscale); c — fluorescein angiography (dye accumulation in the temporal parafoveolar area out of undetermined source); d – indocyanine green angiography, middle phase (enlargement of choroidal veins, choroidal hyperpermeability); e — spectral domain optical coherence tomography (neuroepithelial detachment, hyperreflective deposits along the retinal pigment epithelium, elongation of photoreceptors, deposits in the shape of “dense fringe”, diffusely enlarged choroidal vessels); f – optical coherence tomography angiography (half-shade from neuroepithelial detachment by subretinal material)

Download (777KB)
5. Fig. 4. ROC — curves of the resulting models. Model 1 — criteria of spectral domain optical coherence tomography; Model 2 — criteria of spectral domain optical coherence tomography, and those of optical coherence tomography angiography; Model 3 — criteria of spectral domain optical coherence tomography, and those of short-wavelength autofluorescence; Model 4 — criteria of spectral domain optical coherence tomography, those of optical coherence tomography angiography, and those of short-wavelength autofluorescence; Model 5 (expert model) — criteria of spectral domain optical coherence tomography, those of optical coherence tomography angiography, those of short-wavelength autofluorescence, those of fluorescein angiography, and those of indocyanine green angiography

Download (205KB)
6. Fig. 5. Example of applying the formula for calculating the probability of detecting central serous chorioretinopathy, Model 4: a — high-resolution spectral domain optical coherence tomography; b — short-wavelength autofluorescence

Download (462KB)
7. Fig. 6. Example of applying the formula for calculating the probability of detecting vitelliform dystrophy, Model 4: a — high-resolution spectral domain optical coherence tomography; b — short-wavelength autofluorescence

Download (439KB)

Copyright (c) 2020 Matcko N.V., Gatsu M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies