Eye microcirculation in glaucoma. Part 1. Diagnostic methods
- Authors: Petrov S.Y.1, Kiseleva T.N.1, Okhotsimskaya T.D.1, Markelova O.I.1
-
Affiliations:
- Helmholtz National Medical Research Center of Eye Diseases
- Issue: Vol 17, No 3 (2024)
- Pages: 113-123
- Section: Reviews
- Submitted: 12.03.2024
- Accepted: 19.07.2024
- Published: 10.09.2024
- URL: https://journals.eco-vector.com/ov/article/view/628995
- DOI: https://doi.org/10.17816/OV628995
- ID: 628995
Cite item
Abstract
Glaucoma is a socially significant disease, which is a wide group of polyetiological diseases. In the etiology of primary glaucoma, in addition to the mechanical theory, a vascular mechanism is also distinguished, and therefore, the search and development of the most informative and accurate method for studying ocular blood flow continues. Existing methods are divided into invasive and non-invasive. Invasive methods include angiography with intravenous fluorescein and indocyanine. Non-invasive methods include ultrasound Doppler mapping and pulsed Doppler modes, optical coherence tomography with angiography and laser speckle flowography. The review presents data on modern methods for ocular hemodynamics in glaucoma and ocular hypertension with technologies for studying retrobulbar blood flow and intraocular hemocirculation.
Full Text

About the authors
Sergey Yu. Petrov
Helmholtz National Medical Research Center of Eye Diseases
Email: glaucomatosis@gmail.com
ORCID iD: 0000-0001-6922-0464
SPIN-code: 9220-8603
MD, Dr. Sci. (Medicine)
Russian Federation, MoscowTatiana N. Kiseleva
Helmholtz National Medical Research Center of Eye Diseases
Email: tkisseleva@yandex.ru
ORCID iD: 0000-0002-9185-6407
SPIN-code: 5824-5991
MD, Dr. Sci. (Medicine)
Russian Federation, MoscowTatiana D. Okhotsimskaya
Helmholtz National Medical Research Center of Eye Diseases
Email: tata123@inbox.ru
ORCID iD: 0000-0003-1121-4314
SPIN-code: 9917-7103
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowOksana I. Markelova
Helmholtz National Medical Research Center of Eye Diseases
Author for correspondence.
Email: levinaoi@mail.ru
ORCID iD: 0000-0002-8090-6034
SPIN-code: 6381-9851
MD
Russian Federation, MoscowReferences
- Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224
- Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi: 10.1016/j.ophtha.2014.05.013
- Neroev VV, Kiseleva OA, Bessmertny AM. The main results of a multicenter study of epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian Ophthalmological Journal. 2013;6(3):4–7. EDN: QIWMDX
- Sotimehin AE, Ramulu PY. Measuring disability in glaucoma. J Glaucoma. 2018;27(11):939–949. doi: 10.1097/IJG.0000000000001068
- Clinical Gidelines “Primary open angle glaucoma”. 2020 (16.02.2021). Approved by the Ministry of Health of the Russian Federation [cited 2024, March 09]. Available from: http://avo-portal.ru/documents/fkr/Klinicheskie_rekomendacii_POUG_2022.pdf. (In Russ.)
- Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–393. doi: 10.1016/s1350-9462(02)00008-3
- Hayreh SS. Ishemic optic neuropathies. Springer Berlin: Heidelberg; 2011. 456 p.
- Kurysheva NI. Vascular theory of the glaucomatous optic neuropathy pathogenesis: rationale in terms of ocular blood flow anatomy and physiology. Part 1. National Journal Glaucoma. 2017;16(3): 90–97. (In Russ.) EDN: ZIOXEP
- Neroev BB, Kiselevа TN. Ultrasound in Ophthalmology: A Guide for Physicians. Moscow: IKAR; 2019. 324 p. (In Russ.) EDN: FZIZZY
- Morgan WH, Lind CR, Kain S, et al. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci. 2012;53(8):4676–4681. doi: 10.1167/iovs.12-9837
- Caprioli J, Coleman AL. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. 2010;149(5):704–712. doi: 10.1016/j.ajo.2010.01.018
- Kurisheva NI. Ocular perfusion pressure and primary vascular dysregulation in normal tension glaucoma. National Journal Glaucoma. 2011;(3):11–17. EDN: RUHKYB
- Kurysheva NI. Vascular theory of the glaucomatous optic neuropathy pathogenesis: physiological and pathophysiological rationale. PART 2. Glaucoma. 2017;16(4):98–109. EDN: ZWZTYT
- Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–221. doi: 10.1001/archopht.1995.01100020100038
- Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol. 2009;20(2):73–78. doi: 10.1097/ICU.0b013e32831eef82
- Gherghel D, Orgul S, Gugleta K, et al. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol. 2000;130(5): 597–605. doi: 10.1016/s0002-9394(00)00766-2
- Kiseleva TN, Kotelin VI, Losanova OA, et al. Noninvasive methods assessment blood flow in anterior segment and clinical application perspective. Ophthalmology. 2017;14(4):283–290. EDN: URSAXZ doi: 10.18008/1816-5095-2017-4-283-290
- Kotliar KE, Drozdova GA, Shamshinova A.M. Ocular hemodynamics and contemporary methods of its assessment. Part III. Non-invasive methods of assessment of ocular blood flow. 2. Static and dynamic assessment of retinal vessel reaction to stimuli. Glaucoma. 2007;(2):64–71. EDN: KWEXCN
- Invernizzi A, Pellegrini M, Cornish E, et al. Imaging the choroid: from indocyanine green angiography to optical coherence tomography angiography. Asia Pac J Ophthalmol (Phila). 2020;9(4):335–348. doi: 10.1097/APO.0000000000000307
- Francois J, de Laey JJ. Fluorescein angiography of the glaucomatous disc. Ophthalmologica. 1974;168(4):288–298. doi: 10.1159/000307051
- Hitchings RA, Spaeth GL. Fluorescein angiography in chronic simple and low-tension glaucoma. Br J Ophthalmol. 1977;61(2): 126–132. doi: 10.1136/bjo.61.2.126
- Talusan E, Schwartz B. Specificity of fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol. 1977;95(12):2166–2175. doi: 10.1001/archopht.1977.04450120072006
- Tsukahara S, Nagataki S, Sugaya M, et al. Visual field defects, cup-disc ratio and fluorescein angiography in glaucomatous optic atrophy. Adv Ophthalmol. 1978;(35):73–93.
- Lee EJ, Lee KM, Lee SH, et al. Parapapillary choroidal microvasculature dropout in glaucoma: a comparison between optical coherence tomography angiography and indocyanine green angiography. Ophthalmology. 2017;124(8):1209–1217. doi: 10.1016/j.ophtha.2017.03.039
- O’Brart DP, de Souza Lima M, Bartsch DU, et al. Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 1997;123(5):657–666. doi: 10.1016/s0002-9394(14)71078-5
- Arend O, Plange N, Sponsel WE, et al. Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open angle glaucoma. Brain Res Bull. 2004;62(6):517–524. doi: 10.1016/j.brainresbull.2003.07.008
- Maram J, Srinivas S, Sadda SR. Evaluating ocular blood flow. Indian J Ophthalmol. 2017;65(5):337–346. doi: 10.4103/ijo.IJO_330_17
- Kiseleva TN, Zaitsev MS, Ramazanova KA, et al. Possibilities of color duplex imaging in the diagnosis of ocular vascular pathology. Russian Ophthalmological Journal. 2018;11(3):84–94. EDN: UWAROQ doi: 10.21516/2072-0076-2018-11-3-84-94
- Magureanu M, Stanila A, Bunescu LV, et al. Color Doppler imaging of the retrobulbar circulation in progressive glaucoma optic neuropathy. Rom J Ophthalmol. 2016;60(4):237–248.
- Madhpuriya G, Gokhale S, Agrawal A, et al. Evaluation of hemodynamic changes in retrobulbar blood vessels using color doppler imaging in diabetic patients. Life (Basel). 2022;12(5):629. doi: 10.3390/life12050629
- Castilla-Guerra L, Gomez Escobar A, Gomez Cerezo JF. Utility of Doppler ultrasound for the study of ocular vascular disease. Rev Clin Esp (Barc). 2021;221(7):418–425. doi: 10.1016/j.rceng.2020.11.007
- Kurisheva NI, Maslova EV, Trubilina AV, Fomin AV. OCT-angiography and color doppler imaging in the study of hemoperfusion in the retina and optic nerve in poag. Oftalmologiya. 2016;13(2): 102–110. EDN: WCDCVJ doi: 10.18008/1816-5095-2016-2-102-110
- Kiseleva TN, Grigorieva EG, Tarasova LN. Glaucomatous neuropathy concomitant with carotid pathology: the specificity of pathogenesis and diagnostics. Russian Annals of Ophthalmology. 2003;119(6):5–7. EDN: TUDJWB
- Kiseleva TN, Tarasova LN, Fokin AA, et al. Clinical features of open-angle glaucoma in patients with critical stenosis of the internal carotid artery. Russian Annals of Ophthalmology. 2002;118(1):6–9. (In Russ.)
- Bittner M, Faes L, Boehni SC, et al. Colour Doppler analysis of ophthalmic vessels in the diagnosis of carotic artery and retinal vein occlusion, diabetic retinopathy and glaucoma: systematic review of test accuracy studies. BMC Ophthalmol. 2016;16(1):214. doi: 10.1186/s12886-016-0384-0
- Kurysheva NI, Parshunina OA, Shatalova EO, et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res. 2017;42(3):411–417. doi: 10.1080/02713683.2016.1184281
- Kurysheva NI, Kiseleva TN, Irtegova EYu. Features of venous blood flow in primary open-angle glaucoma. Glaucoma. 2012;(4): 24–30. (In Russ.) EDN: PYWARU
- Januleviciene I, Sliesoraityte I, Siesky B, et al. Diagnostic compatibility of structural and haemodynamic parameters in open-angle glaucoma patients. Acta Ophthalmol. 2008;86(5):552–557. doi: 10.1111/j.1600-0420.2007.01091.x
- Jonas JB. Central retinal artery and vein collapse pressure in eyes with chronic open angle glaucoma. Br J Ophthalmol. 2003;87(8):949–951. doi: 10.1136/bjo.87.8.949
- Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;(64):1–55. doi: 10.1016/j.preteyeres.2017.11.003
- Rabiolo A, Fantaguzzi F, Montesano G, et al. Comparison of retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness values using spectral-domain and swept-source oct. Transl Vis Sci Technol. 2022;11(6):27. doi: 10.1167/tvst.11.6.27
- Chansangpetch S, Lin SC. Optical coherence tomography angiography in glaucoma care. Curr Eye Res. 2018;43(9):1067–1082. doi: 10.1080/02713683.2018.1475013
- Dastiridou A, Chopra V. Potential applications of optical coherence tomography angiography in glaucoma. Curr Opin Ophthalmol. 2018;29(3):226–233. doi: 10.1097/ICU.0000000000000475
- Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3(12): 3127–3137. doi: 10.1364/BOE.3.003127
- Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–1332. doi: 10.1016/j.ophtha.2014.01.021
- Chen CL, Zhang A, Bojikian KD, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT475–OCT485. doi: 10.1167/iovs.15-18909
- Mansoori T, Sivaswamy J, Gamalapati JS, et al. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma. J Glaucoma. 2017;26(5): 438–443. doi: 10.1097/IJG.0000000000000649
- Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017;124(5):709–719. doi: 10.1016/j.ophtha.2017.01.004
- Kurysheva NI. OCT angiography and its role in the study of retinal microcirculation in glaucoma (PART TWO). Russian Ophthalmological Journal. 2018;11(3):95–100. EDN: UWARPE doi: 10.21516/2072-0076-2018-11-3-95-100
- Kurysheva NI. Oct angiography and its role in the study of retinal microcirculation in glaucoma (PART ONE). Russian Ophthalmological Journal. 2018;11(2):82–86. EDN: XOTJML doi: 10.21516/2072-0076-2018-11-2-82-86
- Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology. 2016;123(12): 2509–2518. doi: 10.1016/j.ophtha.2016.09.002
- Rao HL, Pradhan ZS, Weinreb RN, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–115. doi: 10.1016/j.ajo.2017.02.020
- Zhang S, Wu C, Liu L, et al. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma. Am J Ophthalmol. 2017;182:194–200. doi: 10.1016/j.ajo.2017.07.024
- Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045–1052. doi: 10.1001/jamaophthalmol.2015.2225
- Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015;253(9):1557–1564. doi: 10.1007/s00417-015-3095-y
- Geyman LS, Garg RA, Suwan Y, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101(9):1261–1268. doi: 10.1136/bjophthalmol-2016-309642
- Kurysheva NI, Nikitina AD. Optical coherence tomography and optical coherence tomography angiography for detecting glaucoma progression. Part 2. Clinical and functional correlations, monitoring of advanced glaucoma and limitations of the method. Russian Annals of Ophthalmology. 2023;139(2):76–83. (In Russ.) doi: 10.17116/oftalma202313902176
- In JH, Lee SY, Cho SH, et al. Peripapillary vessel density reversal after trabeculectomy in glaucoma. J Ophthalmol. 2018;2018:8909714. doi: 10.1155/2018/8909714
- Shin JW, Sung KR, Uhm KB, et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017;58(13):5993–5999. doi: 10.1167/iovs.17-22787
- Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 2018;8(1):5343. doi: 10.1038/s41598-018-23149-0
- Witkowska KJ, Bata AM, Calzetti G, et al. Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy. PLoS One. 2017;12(9):e0184772. doi: 10.1371/journal.pone.0184772
- Neroeva NV, Zaytseva OV, Okhotsimskaya TD, et al. Age-related changes of ocular blood flow detecting by laser speckle flowgraphy. Russian Ophthalmological Journal. 2023;16(2):54–62. (In Russ.) doi: 10.21516/2072-0076-2023-16-2-54-62
- Gardiner SK, Cull G, Fortune B, et al. Increased optic nerve head capillary blood flow in early primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2019;60(8):3110–3118. doi: 10.1167/iovs.19-27389
- Takeshima S, Higashide T, Kimura M, et al. Effects of trabeculectomy on waveform changes of laser speckle flowgraphy in open angle glaucoma. Invest Ophthalmol Vis Sci. 2019;60(2):677–684. doi: 10.1167/iovs.18-25694
- Aizawa N, Kunikata H, Shiga Y, et al. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy. BMC Ophthalmol. 2014;14:113. doi: 10.1186/1471-2415-14-113
- Petrov SYu, Okhotsimskaya TD, Markelova OI. Assessment of age-related changes in the parameters of the ocular blood flow of the optic nerve disc by laser speckle fluorography. Point of view. East–West. 2022;1:23–26. EDN: IKLICH doi: 10.25276/2410-1257-2022-1-23-26
Supplementary files
