Pathogenetic Mechanisms of Peristalsis Disorders in Chronic Constipation

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

INTRODUCTION: Chronic constipation is one of the most pressing problems in the contemporary coloproctology, which is observed in 14%–16% of the population of developed countries. The causes of chronic constipation widely vary from functional to organic. Pathogenesis of this syndrome is based on peristalsis disorders.

AIM: Analysis and systematization of the relevant literature data on pathogenetic mechanisms of disorders in peristalsis in chronic constipation.

Peristalsis is controlled by the influence of the sympathetic and parasympathetic divisions of the autonomic nervous system on the enteric nervous system. The latter, in turn, is regulated by a complex interaction of nerve cells (afferent, motor, mechanosensitive neurons, interneurons, glial cells) with auxiliary cells (enterochromaffin, interstitial, mast cells, fibroblasts, immune cells, endothelium). The intercellular relations provide homeostasis of ions, hormones and neurotransmitters.

CONCLUSION: A disorder in any of the numerous regulatory mechanisms can lead to chronic constipation, and understanding of many-sided pathways of the pathogenesis of the disease will permit to justify and apply the best treatment methods.

Full Text

Restricted Access

About the authors

Tat'yana I. Shevchenko

Donetsk National Medical University named after M. Gorky

Email: tatianashev4enko57@gmail.com
ORCID iD: 0000-0002-2073-9772

MD, Dr. Sci. (Med.), Professor

Russian Federation, Donetsk, Donetsk People's Republic

Danil S. Shvorob

Donetsk National Medical University named after M. Gorky

Author for correspondence.
Email: mcshady@mail.ru
ORCID iD: 0000-0001-6578-0050
Russian Federation, Donetsk, Donetsk People's Republic

Arina A. Abramyan

Donetsk National Medical University named after M. Gorky

Email: dr.arinaashotovna@mail.ru
ORCID iD: 0000-0001-6819-652X
Russian Federation, Donetsk, Donetsk People's Republic

Il'ya S. Grekov

Donetsk National Medical University named after M. Gorky

Email: ilya.grekov.1998@gmail.com
ORCID iD: 0000-0002-6140-5760
Russian Federation, Donetsk, Donetsk People's Republic

References

  1. Bayliss WM, Starling EH. The movements and innervation of the small intestine. J Physiol. 1899;24(2):99–143. doi: 10.1113/jphysiol.1899.sp000752
  2. Flemming G. Chronic Functional Constipation in Infants and Children. Handb Exp Pharmacol. 2020;261:377–96. doi: 10.1007/164_2019_223
  3. Bharucha AE, Lacy BE. Mechanisms, Evaluation, and Management of Chronic Constipation. Gastroenterology. 2020;158(5):1232–49.e3. doi: 10.1053/j.gastro.2019.12.034
  4. Camilleri M, Ford AC, Mawe GM, et al. Chronic constipation. Nat Rev Dis Primers. 2017;3:17095. doi: 10.1038/nrdp.2017.95
  5. Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest. 2015;125(3):899–907. doi: 10.1172/jci76307
  6. Grubišić V, Gulbransen BD. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J Physiol. 2017;595(11):3409–24. doi: 10.1113/jp273492
  7. Reynaud Y, Fakhry J, Fothergill L, et al. The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract. Cell Tissue Res. 2016;364(3):489–97. doi: 10.1007/s00441-015-2349-7
  8. Bellono NW, Bayrer JR, Leitch DB, et al. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell. 2017;170(1):185–98.e16. doi: 10.1016/j.cell.2017.05.034
  9. Wang F, Knutson K, Alcaino C, et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol. 2017;595(1):79–91. doi: 10.1113/jp272718
  10. Cohen M, Cazals–Hatem D, Duboc H, et al. Evaluation of interstitial cells of Cajal in patients with severe colonic inertia requiring surgery: a clinical-pathological study. Colorectal Dis. 2017;19(5):462–7. doi: 10.1111/codi.13511
  11. Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907. doi: 10.1152/physrev.00037.2013
  12. McClain J, Grubišić V, Fried D, et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology. 2014;146(2):497–507.e1. doi: 10.1053/j.gastro.2013.10.061
  13. Shimizu K, Ogura H, Matsumoto N. Interstitial cells of Cajal are diminished in critically ill patients: Autopsy cases. Nutrition. 2020;70:110591. doi: 10.1016/j.nut.2019.110591
  14. Wang H, Zhang Y, Liu W, et al. Interstitial cells of Cajal reduce in number in recto-sigmoid Hirschsprung's disease and total colonic aganglionosis. Neurosci Lett. 2009;451(3):208–11. doi: 10.1016/j.neulet. 2009.01.015
  15. Yu CS, Kim HC, Hong HK, et al. Evaluation of myenteric ganglion cells and interstitial cells of Cajal in patients with chronic idiopathic constipation. Int J Colorectal Dis. 2002;17(4):253–8. doi: 10.1007/s00384-001-0380-5
  16. Zhou X, Qian H, Zhang D, et al. Inhibition of autophagy of Cajal mesenchymal cells by gavage of tong bian decoction based on the rat model of chronic transit constipation. Saudi J Biol Sci. 2020;27(2):623–8. doi: 10.1016/j.sjbs.2019.11.040
  17. Foong D, Zhou J, Zarrouk A, et al. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility. Int J Mol Sci. 2020;21(12):4540. doi: 10.3390/ijms21124540
  18. Bassotti G, Chistolini F, Battaglia E, et al. Are colonic regular contractile frequency patterns in slow transit constipation a relevant pathophysiological phenomenon. Dig Liver Dis. 2003;35(8):552–6. doi: 10.1016/s1590-8658(03)00271-8
  19. Rao SS, Sadeghi P, Beaty J, et al. Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(4):G629–39. doi: 10.1152/ajpgi.2001.280.4.g629
  20. Dinning PG, Wiklendt L, Maslen L, et al. Colonic motor abnormalities in slow transit constipation defined by high resolution, fibre-optic manometry. Neurogastroenterol Motil. 2015;27(3):379–88. doi: 10.1111/nmo.12502
  21. LePard KJ, Ren J, Galligan JJ. Presynaptic modulation of cholinergic and non-cholinergic fast synaptic transmission in the myenteric plexus of guinea pig ileum. Neurogastroenterol Motil. 2004;16(3):355–64. doi: 10.1111/j.1365-2982.2004.00505.x
  22. Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018;12:49. doi: 10.3389/fnins.2018.00049
  23. Smith–Edwards KM, Najjar SA, Edwards BS, et al. Extrinsic Primary Afferent Neurons Link Visceral Pain to Colon Motility Through a Spinal Reflex in Mice. Gastroenterology. 2019;157(2):522–36. doi: 10.1053/j.gastro.2019.04.034
  24. Schneider S, Wright CM, Heuckeroth RO. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu Rev Physiol. 2019;81:235–59. doi: 10.1146/annurev-physiol-021317-121515
  25. Beck K, Voussen B, Reigl A, et al. Cell-specific effects of nitric oxide on the efficiency and frequency of long distance contractions in murine colon. Neurogastroenterol Motil. 2019;31(6):e13589. doi: 10.1111/nmo.13589
  26. Martinez–Cutillas M, Gil V, Mañé N, et al. Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility. Pharmacol Res. 2015;93:52–63. doi: 10.1016/j.phrs. 2015.01.002
  27. Ahmed M, Ahmed S. Functional, Diagnostic and Therapeutic Aspects of Gastrointestinal Hormones. Gastroenterology Res. 2019; 12(5):233–44. doi: 10.14740/gr1219
  28. Ceccotti C, Giaroni C, Bistoletti M, et al. Neurochemical characterization of myenteric neurons in the juvenile gilthead sea bream (Sparus aurata) intestine. PLoS One. 2018;13(8):e0201760. doi: 10.1371/journal.pone.0201760
  29. Dimidi E, Christodoulides S, Scott SM, et al. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv Nutr. 2017;8(3):484–94. doi: 10.3945/an.116.014407
  30. Li Y–Y, Li Y–N, Ni J–B, et al. Involvement of cannabinoid-1 and cannabinoid-2 receptors in septic ileus. Neurogastroenterol Motil. 2010;22(3):350–e88. doi: 10.1111/j.1365-2982.2009.01419.x
  31. Barrett KE. Endogenous and exogenous control of gastrointestinal epithelial function: building on the legacy of Bayliss and Starling. J Physiol. 2017;595(2):423–32. doi: 10.1113/jp272227
  32. Zhu S, Ran J, Yang B, et al. Aquaporins in Digestive System. Adv Exp Med Biol. 2017;969:123–30. doi: 10.1007/978-94-024-1057-0_8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies