Breast Cancer Resistance Protein: Structure, Localization, Functions, Significance for Rational Pharmacotherapy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

INTRODUCTION: Currently, investigation of efflux transport systems of an organism is an important scientific and practical task permitting to more deeply investigate the pharmacokinetics of medical drugs and to optimize pharmacotherapy of a number of diseases. The super family of ABC transporters plays a significant role in transport of biobiotics, the processes of absorption, distribution and excretion of medical drugs from an organism, in realization of undesired drug-drug interactions and development of pharmacoresistance. An important representative of this super family is breast cancer resistance protein (BCRP).

AIM: Systematization of the data on BCRP structure, localization, functions, substrates and modulators of its activity.

This literature review presents modern data on the molecular and spatial structure of BCRP, its localization in the cell, in organs and tissues. The data from studies of the functions of BCRP in an organism, of its role in the development of undesired drug-drug interactions at different stages of pharmacokinetics are summarized. An up-to-date list of medicinal drugs that are substrates and inhibitors of BCRP is given. Modern approaches to testing medical drugs for belonging to BCRP substrates or modulators of its activity are disclosed.

CONCLUSION: The significance of BCRP consists in the existence of a wide range of drugs that are its substrates or modulators of its activity. Upon that, of increasing significance is the investigation both of new and long-known medicinal substances for their belonging to substrates, inducers or inhibitors of breast cancer resistance protein, in order to increase the effectiveness of pharmacotherapy and reduce the risk of undesired drug interactions. Search for non-drug substrates and modulators of BCRP activity permits to obtain new markers for conducting effective studies of safe pharmacokinetics both in vitro and in vivo.

Full Text

Restricted Access

About the authors

Natal’ya M. Popova

Ryazan State Medical University

Author for correspondence.
Email: p34-66@yandex.ru
ORCID iD: 0000-0002-5166-8372
SPIN-code: 7553-9852

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Ryazan

Aleksey V. Shchul’kin

Ryazan State Medical University

Email: alekseyshulkin@rambler.ru
ORCID iD: 0000-0003-1688-0017
SPIN-code: 2754-1702

MD, Dr. Sci. (Med.), Associate Professor

Russian Federation, Ryazan

Yuliya S. Tranova

Ryazan State Medical University

Email: yulyatran@gmail.com
ORCID iD: 0000-0001-5068-1201
SPIN-code: 2732-8760
Russian Federation, Ryazan

Mariya I. Povetko

Ryazan State Medical University

Email: masha-povetko@mail.ru
ORCID iD: 0000-0003-1273-520X
SPIN-code: 2307-4064
Russian Federation, Ryazan

Aleksandr S. Polupanov

Ryazan State Medical University

Email: alexpol81@yandex.ru
ORCID iD: 0000-0003-4065-7544
SPIN-code: 8568-0766

MD, Cand. Sci. (Med.)

Russian Federation, Ryazan

Sergey K. Pravkin

Ryazan State Medical University

Email: psco@mail.ru
ORCID iD: 0000-0002-2088-6350
SPIN-code: 3672-6695

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Ryazan

Alexandr A. Slepnev

Ryazan State Medical University

Email: p34-66@yandex.ru
ORCID iD: 0000-0003-0696-6554

к.б.н., доцент кафедры фармакологии

Russian Federation, Ryazan

Elena N. Yakusheva

Ryazan State Medical University

Email: e.yakusheva@rzgmu.ru
ORCID iD: 0000-0001-6887-4888
SPIN-code: 2865-3080

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ryazan

References

  1. Erokhina PD, Abalenikhina YuV, Shchulʹkin AV, et al. Study of influence of estradiol on the activity of P-glycoprotein in vitro. Nauka Molodykh (Eruditio Juvenium). 2020;8(3):329–36. (In Russ). doi: 10.23888/HMJ202083329-336
  2. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998; 95(26):15665–70. doi: 10.1073/pnas.95.26.15665
  3. Drug Development and Drug Interactions: Possible Models for Decision-Making [Internet]. Available at: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-possible-models-decision-making. Accessed: 2023 May 05.
  4. Ni Z, Bikadi Z, Rosenberg MF, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab. 2010;11(7):603–17. doi: 10.2174/138920010792927325
  5. Manolaridis I, Jackson SM, Taylor NMI, et al. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature. 2018;563(7731):426–30. doi: 10.1038/s41586-018-0680-3
  6. Sarankó H, Tordai H, Telbisz Á, et al. Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein. Biochem Biophys Res Commun. 2013;437(1):140–5. doi: 10.1016/j.bbrc.2013.06.054
  7. Macalou S, Robey RW, Jabor Gozzi G, et al. The linker region of breast cancer resistance protein ABCG2 is critical for coupling of ATP-dependent drug transport. Cell Mol Life Sci. 2016;73(9):1927–37. doi: 10.1007/s00018-015-2118-5
  8. Zattoni IF, Delabio LC, Dutra JP, et al. Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem. 2022;237:114346. doi: 10.1016/j.ejmech.2022.114346
  9. Taylor NMI, Manolaridis I, Jackson SM, et al. Structure of the human multidrug transporter ABCG2. Nature. 2017;546(7659):504–9. doi: 10.1038/nature22345
  10. Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–64.
  11. Jonker JW, Merino G, Musters S, et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med. 2005;11(2):127–9. doi: 10.1038/nm1186
  12. Naylor CS, Jaworska E, Branson K, et al. Side population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: implications for the use of adult stem cells in transplantation and plasticity protocols. Bone Marrow Transplant. 2005;35(4):353–60. doi: 10.1038/sj.bmt.1704762
  13. Natarajan K, Xie Y, Baer MR, et al. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 2012;83(8):1084–103. doi: 10.1016/j.bcp.2012.01.002
  14. Marin JJG., Monte MJ, Macias RIR, et al. Expression of chemoresistance-associated ABC proteins in hepatobiliary, pancreatic and gastrointestinal cancers. Cancers (Basel). 2022;14(14):3524. doi: 10.3390/cancers14143524
  15. Chen Y–L, Chen P–M, Lin P–Y, et al. ABCG2 Overexpression Confers Poor Outcomes in Hepatocellular Carcinoma of Elderly Patients. Anticancer Res. 2016;36(6):2983–8.
  16. Sribenja S, Natthasirikul N, Vaeteewoottacharn K, et al. Thymosin β10 as a predictive biomarker of response to 5-fluorouracil chemotherapy in cholangiocarcinoma. Ann Hepatol. 2016;15(4): 577–85.
  17. Marin JJG, Cives–Losada C, Asensio M, et al. Mechanisms of anticancer drug resistance in hepatoblastoma. Cancers (Basel). 2019; 11(3):407. doi: 10.3390/cancers11030407
  18. Zhan D, Ni T, Wang H, et al. Celastrol inhibits the proliferation and decreases drug resistance of cisplatin-resistant gastric cancer SGC7901/DDP cells. Anticancer Agents Med Chem. 2022;22(2):270–9. doi: 10.2174/1871520621666210528144006
  19. Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport — an update. AAPS J. 2015;17(1):65–82. doi: 10.1208/s12248-014-9668-6
  20. Järvinen E, Deng F, Kidron H, et al. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP. J Steroid Biochem Mol Biol. 2018;178:99–107. doi: 10.1016/j.jsbmb.2017.11.007
  21. Xiong H, Callaghan D, Jones A, et al. ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci. 2009;29(17):5463–75. doi: 10.1523/jneurosci.5103-08.2009
  22. Eckenstaler R, Benndorf RA. The Role of ABCG2 in the Pathogenesis of Primary Hyperuricemia and Gout — An Update. Int J Mol Sci. 2021;22(13):6678. doi: 10.3390/ijms22136678
  23. Asashima T, Hori S, Ohtsuki S, et al. ATP-binding cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal capillary endothelial cells. Pharm Res. 2006; 23(6):1235–42. doi: 10.1007/s11095-006-0067-2
  24. Yang Z, Zhu W, Gao S, et al. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos. 2012;40(10):1883–93. doi: 10.1124/dmd.111.043901
  25. Álvarez AI, Vallejo F, Barrera B, et al. Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos. 2011;39(11):2008–12. doi: 10.1124/dmd.111.040881
  26. Poirier A, Portmann R, Cascais AC, et al. The need for human breast cancer resistance protein substrate and inhibition evaluation in drug discovery and development: why, when, and how? Drug Metab Dispos. 2014;42(9):1466–77. doi: 10.1124/dmd.114.058248
  27. Juan ME, González–Pons E, Planas JM. Multidrug resistance proteins restrain the intestinal absorption of trans-resveratrol in rats. J Nutr. 2010;140(3):489–95. doi: 10.3945/jn.109.114959
  28. Robillard KR, Hoque T, Bendayan R. Expression of ATP-binding cassette membrane transporters in rodent and human sertoli cells: relevance to the permeability of antiretroviral therapy at the blood-testis barrier. J Pharmacol Exp Ther. 2012;340(1):96–108. doi: 10.1124/jpet.111.186916
  29. Van Herwaarden AE, Jonker JW, Wagenaar E, et al. The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res. 2003;63(19):6447–52.
  30. Van Herwaarden AE, Wagenaar E, Karnekamp B, et al. Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis. 2006;27(1):123–30. doi: 10.1093/carcin/bgi176
  31. Kranz J, Hessel S, Aretz J, et al. The role of the efflux carriers Abcg2 and Abcc2 for the hepatobiliary elimination of benzo[a]pyrene and its metabolites in mice. Chem Biol Interact. 2014;224:36–41. doi: 10.1016/j.cbi.2014.10.009
  32. Cooray HC, Janvilisri T, van Veen HW, et al. Interaction of the breast cancer resistance protein with plant polyphenol. Biochem Biophys Res Commun. 2004;317(1):269–75. doi: 10.1016/j.bbrc.2004.03.040
  33. Lee CA, O'Connor MA, Ritchie TK, et al. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos. 2015;43(4):490–509. doi: 10.1124/dmd.114.062174
  34. Erokhina PD, Mylʹnikov PY, Ganina SO, et al. Development and Validation of the Quantitative Determination of Atorvastatin in HEPG2 Cell Line Using High-Performance Liquid Chromatography with Mass-Spectrometric Detection. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):149–58. (In Russ). doi: 10.17816/PAVLOVJ100986
  35. De Bruin M, Miyake K, Litman T, et al. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett. 1999;146(2):117–26. doi: 10.1016/s0304-3835(99)00182-2
  36. Kühnle M, Egger M, Müller C, et al. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar. J Med Chem. 2009;52(4):1190–7. doi: 10.1021/jm8013822
  37. Weiss J, Rose J, Storch CH, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45. doi: 10.1093/jac/dkl474
  38. Valdameri G, Genoux–Bastide E, Peres B, et al. Substituted chromones as highly potent nontoxic inhibitors, specific for the breast cancer resistance protein. J Med Chem. 2012;55(2):966–70. doi: 10.1021/jm201404w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies