Gender differences in risk factor profiles, structural and functional myocardial characteristics and heart failure biomarkers in urban population aged 35–69 years

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

INTRODUCTION: Cardiac structure, function and metabolism, as well as the immune system biology significantly differ in men and women. Identification of differences of the myocardial response to the concomitant diseases in women compared to men could provide insight into the mechanisms underlying heart failure (HF) in women and men.

AIM: A comparative analysis of the cardiovascular risk profile, structural and functional myocardial parameters and heart failure biomarkers in the population of men and women, and investigation of gender differences in the relationships of these parameters with metabolic syndrome (MS).

MATERIALS AND METHODS: The ‘Learn Your Heart’ cross-sectional study data were analyzed on a population sample aged 35–69 years (n = 2,380), of which 989 men (41.5%) and 1,391 women (58.5%). History data (bad habits, diseases) and laboratory data, including high-sensitivity troponin T (hs-TnT) and N-terminal propeptide of the brain natriuretic peptide (NT-proBNP) were used. The presence of MS was determined based on AHA/NHBLI 2009 criteria. Echocardiography was used to evaluate structural and functional parameters with phenotyping of systolic and diastolic dysfunction of the left ventricle (LV).

RESULTS: Men were more likely to smoke and have a history of myocardial infarction, while women were more likely to have heart failure and diabetes (p < 0.05 for all). Men had higher triglyceride levels, while women had higher body mass index and low-density lipoprotein cholesterol (all p < 0.05). Ejection fraction and global longitudinal strain (GLS) of the LV, adjusted for bad habits and diseases (heart failure, diabetes, myocardial infarction), had lower values in men, and diastolic dysfunction of the LV was more distinct in women (p < 0.001 for all). The hs-TnT level was higher in men, the frequency of elevated LV filling pressure (E/é) and NT-proBNP concentration exceeded 125 pg/ml in women (all p < 0.05). In women, a stronger negative association was recorded between MS and the é lateral (p = 0.001), é septal (p = 0.003) and GLS (p = 0.013) of the LV.

CONCLUSION: In a population sample aged 35–69 years, gender differences in the structural and functional heart characteristics were identified: lower values of ejection fraction and GLS of LV, higher hs-TnT levels in men and higher levels of LV filling pressure (E/é) and NT-proBNP and stronger negative relationships of MS with relaxation parameters (é lateral, é septal) and LV contractility in women.

全文:

受限制的访问

作者简介

Olga Mirolyubova

North State Medical University

编辑信件的主要联系方式.
Email: o.mirolyubova@yandex.ru
ORCID iD: 0000-0003-4562-8398
SPIN 代码: 3916-2492

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Arkhangelsk

Anna Postoeva

North State Medical University

Email: ann-primak@yandex.ru
ORCID iD: 0000-0003-3749-0173
SPIN 代码: 1597-4394

MD, Cand. Sci. (Medicine), Associate Professor

俄罗斯联邦, Arkhangelsk

Victoria Sibirtseva

North State Medical University

Email: ya.victoria86@yandex.ru
ORCID iD: 0009-0004-5161-3840
SPIN 代码: 9942-2485

MD, Cand. Sci. (Medicine), Associate Professor

俄罗斯联邦, Arkhangelsk

Andrey Ryabikov

Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences; Novosibirsk State Medical University

Email: andrew_ryabikov@mail.ru
ORCID iD: 0000-0001-9868-855X
SPIN 代码: 3978-2103

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Novosibirsk; Novosibirsk

Alexander Kudryavtsev

North State Medical University

Email: ispha09@gmail.com
ORCID iD: 0000-0001-8902-8947
SPIN 代码: 9296-2930

PhD (Norway; Medicine)

俄罗斯联邦, Arkhangelsk

参考

  1. Shlyakhto EV, Zvartau NE, Villevalde SV, et al. Assessment of prevalence and monitoring of outcomes in patients with heart failure in Russia. Russian Journal of Cardiology. 2020;25(12):4204. doi: 10.15829/1560-4071-2020-4204 EDN: DJVEYP
  2. Norhammar А, Bodegard J, Vanderheyden M, et al. Prevalence, outcomes and costs of a contemporary, multinational population with heart failure. Heart. 2023;109(7):548–556. doi: 10.1136/heartjnl-2022-321702
  3. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–1356. doi: 10.1002/ejhf.1858 EDN: AIGVDM
  4. Ruiz-García A, Serrano-Cumplido A, Escobar-Cervantes C, et al. Heart Failure Prevalence Rates and Its Association with Other Cardiovascular Diseases and Chronic Kidney Disease: SIMETAP-HF Study. J Clin Med. 2023;12(15):4924. doi: 10.3390/jcm12154924 EDN: BYXSUS
  5. Safiullina AA, Uskach TM, Saipudinova KM, et al. Heart failure and obesity. Terapevticheskii Arkhiv. 2022;94(9):1115–1121. doi: 10.26442/00403660.2022.09.201837 EDN: NYYCKZ
  6. Boytsov SA, Pogosova NV, Ansheles AA, et al. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023; 28(5):119–249. doi: 10.15829/1560-4071-2023-5452 EDN: EUDWYG
  7. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):311–374. doi: 10.15829/1560-4071-2020-4083 EDN: LJGGQV
  8. Suthahar N, Lau ES, Blaha MJ, et al. Sex-Specific Associations of Cardiovascular Risk Factors and Biomarkers With Incident Heart Failure. J Am Coll Cardiol. 2020;76(12):1455–1465. doi: 10.1016/j.jacc.2020.07.044 EDN: WAPHYU
  9. Lau ES, Binek A, Parker SJ, et al. Sexual Dimorphism in Cardiovascular Biomarkers: Clinical and Research Implications. Circ Res. 2022;130(4):578–592. doi: 10.1161/circresaha.121.319916 Erratum in: Circ Res. 2022;131(3):e83. doi: 10.1161/res.0000000000000559 EDN: GFAIWV
  10. Anker SD, Usman MS, Anker MS, et al. Patient phenotype profiling in heart failure with preserved ejection fraction to guide therapeutic decision making. A scientific statement of the Heart Failure Association, the European Heart Rhythm Association of the European Society of Cardiology, and the European Society of Hypertension. Eur J Heart Fail. 2023;25(7):936–955. doi: 10.1002/ejhf.2894 EDN: UTSXRA
  11. Merrill M, Sweitzer NK, Lindenfeld J, Kao DP. Sex Differences in Outcomes and Responses to Spironolactone in Heart Failure with Preserved Ejection Fraction: A Secondary Analysis of TOPCAT Trial. JACC Heart Fail. 2019;7(3):228–238. doi: 10.1016/j.jchf.2019.01.003 EDN: LRPZLV
  12. Tsygankova OV, Evdokimova NE, Veretyuk VV, et al. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes Mellitus. 2022;25(6):535–547. doi: 10.14341/DM12916 EDN: EFRHSY
  13. Chen J, Li M, Hao B, et al. Waist to height ratio is associated with an increased risk of mortality in Chinese patients with heart failure with preserved ejection fraction. BMC Cardiovasc Disord. 2021;21(1):263. doi: 10.1186/s12872-021-02080-9 EDN: JTDFNQ
  14. Pop-Busui R, Januzzi JL, Bruemmer D, et al. Heart failure: An underappreciated complication of diabetes. A consensus report of the American Diabetes Association. Diabetes Care. 2022;45(7):1670–1690. doi: 10.2337/dci22-0014 EDN: TMRLVK
  15. Cook S, Malyutina S, Kudryavtsev AV, et al. Know Your Heart: Rationale, design and conduct of a cross-sectional study of cardiovascular structure, function and risk factors in 4500 men and women aged 35–69 years from two Russian cities, 2015-18. Wellcome Open Res. 2018;3:67. doi: 10.12688/wellcomeopenres.14619.3 EDN: OMTJSN
  16. Cosentino F, Grant PJ, Aboyans V, et al.; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. doi: 10.1093/eurheartj/ehz486 EDN: GWNSUW
  17. Mirolyubova OA, Postoeva AV, Semchugova EO, et al. Features of heart diastolic dysfunction in Arkhangelsk residents with metabolic syndrome. Russian Journal of Preventive Medicine. 2023;26(4):86–94. doi: 10.17116/profmed20232604186 EDN: GXTNSC
  18. Yang H, Wright L, Negishi T, et al. Research to Practice: Assessment of Left Ventricular Global Longitudinal Strain for Surveillance of Cancer Chemotherapeutic-Related Cardiac Dysfunction. JACC: Cardiovasc Imaging. 2018;11(8):1196–1201. doi: 10.1016/j.jcmg.2018.07.005
  19. Nagueh SF, Middleton KJ, Kopelen HA, et al. Doppler Tissue Imaging: A Noninvasive Technique for Evaluation of Left Ventricular Relaxation and Estimation of Filling Pressures. J Am Coll Cardiol. 1997;30(6):1527–1533. doi: 10.1016/s0735-1097(97)00344-6 EDN: AQOFJP
  20. Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297–3317. doi: 10.1093/eurheartj/ehz641 EDN: PFSOZT
  21. Alberti KGMM, Eckel RH, Grundy SM, et al. International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–1645. doi: 10.1161/circulationaha.109.192644
  22. Fomin IV. Chronic heart failure in Russian Federation: what do we know and what to do. Russian Journal of Cardiology. 2016;(8):7–13. doi: 10.15829/1560-4071-2016-8-7-13 EDN: WHURET
  23. Dewan P, Rørth R, Raparelli V, et al. Sex-Related Differences in Heart Failure with Preserved Ejection Fraction. Circ Heart Fail. 2019;12(12):e006539. doi: 10.1161/circheartfailure.119.006539 EDN: HJKKPZ
  24. Ryabikov AN, Guseva VP, Voronina EV, et al. An association between echo-cardiographic left ventricle longitudinal strain and hypertension in general population depending on blood pressure control. Arterial Hypertension. 2019;25(6):653–664. doi: 10.18705/1607-419X-2019-25-6-653-664. EDN: KYHUEH
  25. Boytsov SA, Balanova YuA, Shalnova SA, et al. Arterial hypertension among individuals of 25–64 years old: prevalence, awareness, treatment and control. By the data from ECCD. Cardiovascular Therapy and Prevention. 2014;13(4):4–14. doi: 10.15829/1728-8800-2014-4-4-14 EDN: SLQTRD
  26. Satta S, Beal R, Smith R, et al. A Nrf2-OSGIN1&2-HSP70 axis mediates cigarette smoke-induced endothelial detachment: implications for plaque erosion. Cardiovasc Res. 2023;119(9):1869–1882. doi: 10.1093/cvr/cvad022 EDN: HLMFHC
  27. Zhao X, Wang D, Qin L. Lipid profile and prognosis in patients with coronary heart disease: a meta-analysis of prospective cohort studies. BMC Cardiovasc Disord. 2021;21(1):69. doi: 10.1186/s12872-020-01835-0 EDN: AEQROI
  28. Ezhov MV, Shalnova SA, Yarovaya EB, et al. Lipoprotein(a) in an adult sample from the Russian population: distribution and association with atherosclerotic cardiovascular diseases. Arch Med Sci. 2021;19(4):995–1002. doi: 10.5114/aoms/131089 EDN: WGQKEG
  29. Kalkman DN, Couturier EGM, El Bouziani A, et al. Migraine and cardiovascular disease: what cardiologists should know. Eur Heart J. 2023;44(30):2815–2828. doi: 10.1093/eurheartj/ehad363 EDN: UDTVQE
  30. Beale AL, Meyer P, Marwick TH, et al. Sex Differences in Cardiovascular Pathophysiology: Why Women Are Overrepresented in Heart Failure With Preserved Ejection Fraction. Circulation. 2018;138(2):198–205. doi: 10.1161/circulationaha.118.034271
  31. Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res. 2023;119(10):1905–1914. doi: 10.1093/cvr/cvad100 EDN: QZGLTX
  32. Meloni A, Cadeddu C, Cugusi L, et al. Gender Differences and Cardiometabolic Risk: The Importance of the Risk Factors. Int J Mol Sci. 2023;24(2):1588. doi: 10.3390/ijms24021588 EDN: HCEYRX
  33. Cediel G, Codina P, Spitaleri G, et al. Gender-Related Differences in Heart Failure Biomarkers. Front Cardiovasc Med. 2012;7:617705. doi: 10.3389/fcvm.2020.617705 EDN: LIYKCS
  34. Bachmann KN, Huang S, Lee H, et al. Effect of testosterone on natriuretic peptide levels. J Am Coll Cardiol. 2019;73(11):1288–1296. doi: 10.1016/j.jacc.2018.12.062
  35. Khan AM, Cheng S, Magnusson M, et al. Cardiac natriuretic peptides, obesity, and insulin resistance: evidence from two community-based studies. J Clin Endocrinol Metab. 2011;96(10):3242–3249. doi: 10.1210/jc.2011-1182
  36. Ndumele CE, Coresh J, Lazo M, et al. Obesity, subclinical myocardial injury, and incident heart failure. JACC Heart Fail. 2014;2(6):600–607. doi: 10.1016/j.jchf.2014.05.017
  37. Papamitsou T, Barlagiannis D, Papaliagkas V, et al. Testosterone-induced hypertrophy, fibrosis and apoptosis of cardiac cells — an ultrastructural and immunohistochemical study. Med Sci Monit. 2011;17(9):BR266–BR273. doi: 10.12659/msm.881930
  38. Wu Z, Pilbrow AP, Liew OW, et al. Circulating cardiac biomarkers improve risk stratification for incident cardiovascular disease in community dwelling populations. EBioMedicine. 2022;82:104170. doi: 10.1016/j.ebiom.2022.104170 EDN: PDGQYE
  39. Iakunchykova O, Averina M, Wilsgaard T, et al. Why does Russia have such high cardiovascular mortality rates? Comparisons of blood-based biomarkers with Norway implicate non-ischaemic cardiac damage. J Epidemiol Community Health. 2020;74(9):698–704. doi: 10.1136/jech-2020-213885 EDN: FEBLGG
  40. Packer M, Lam CSP, Lund LH, et al. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction: a hypothesis to explain influence of sex on the evolution and potential treatment of the disease. Eur J Heart Fail. 2020;22(9): 1551–1567. doi: 10.1002/ejhf.1902 EDN: KXXTMQ
  41. Antoniades С, Tousoulis D, Vavlukis M, et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers A clinical consensus statement from the European Society of Cardiology Working Group on Coronary Pathophysiology and Micro-circulation. Eur Heart J. 2023;44(38):3827–3844. doi: 10.1093/eurheartj/ehad484 EDN: PSWQLE

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Percentages of men and women with significant changes in functional, structural and laboratory characteristics of the myocardium: *p <0.05, Pearson χ2 test; é septal — early diastolic velocity at the septal annular site; é lateral — early diastolic velocity at the lateral annular site; E/é — early filling velocity by transmitral Doppler/early relaxation velocity by tissue Doppler; GLS — global longitudinal strain of the left ventricular myocardium; PCWP — pulmonary capillary wedge pressure; EF — ejection fraction; LV — left ventricle; LAVImax — indexed maximal volume of the left atrium; LVMMI — left ventricular myocardial mass index; NT-proBNP — N-terminal pro-brain natriuretic peptide; hsTnT — high-sensitivity troponin T.

下载 (65KB)

版权所有 © Eco-Vector, 2025

许可 URL: https://eco-vector.com/for_authors.php#07

Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.