Possibilities of using allogeneic mesenchymal stem cells and wound dressings based on aliphatic copolyamide in microautodermoplasty

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The treatment of victims with wound defects is an urgent problem of clinical medicine that doctors of various specialties, mainly surgeons and traumatologists, must face. Regardless of the etiology of the traumatic agent, the wound process is always subjected to fundamental pathophysiological processes. Despite the advances made by medical science in the local treatment of wounds (cell technology, modern wound coverings, and others), surgical procedures remain the main methods, and the search for new techniques to optimize reparative regeneration continues. This ongoing search indicates the absence of a universal algorithm for treating such defects. This lack of a universal treatment algorithm is of particular importance for assisting victims with extensive defects, which often leads to a shortage of donor resources.

Aim. The aim of this study was to increase the efficiency of microautodermoplasty due to the use of allogeneic mesenchymal stem cells and wound dressings based on aliphatic copolyamide.

Materials and methods. This paper presents the results of an experimental study involving 50 rats. All animals were divided into groups considering the choice of the method of the local treatment. The experimental wound was modeled according to its original technique. The evaluation of the effectiveness of the analyzed methods was performed using planimetric and histological research methods, and by calculating the healing index.

Results. The most effective methods for treating experimental wounds using microautodermoplasty (MADP) are wound dressings based on aliphatic copolyamide (CoPA) and adipogenic mesenchymal stem cells (AMSC). By 28 days of treatment after performing MADP + CoPA wound dressings + AMSC, it was possible to reduce the defect area by 16 times compared with the control, and the healing index was the maximum value among all methods — 12.5 units. The high regenerative potential was also confirmed by the results of the histological examination. The worst results were found in the MADP group with AMSK that did not cover the wounds with skin or wound dressing.

Conclusion. The introduction of the analyzed methods into clinical practice will improve the results of treatment of patients with wound defects of various etiologies.

Full Text

Restricted Access

About the authors

Vasily A. Gordienko

Saint Petersburg State Pediatric Medical University

Email: chet1337@gmail.com
ORCID iD: 0000-0003-0590-2137
SPIN-code: 4069-2346

MD, assistant at the Laboratory of Experimental Surgery

Russian Federation, 2, Litovskay street, Saint-Peterburg, 194100

Evgenii V. Zinoviev

Saint Petersburg State Pediatric Medical University; Saint Petersburg I.I. Dzhanelidze Research Institute of Emergency Medicine

Email: evz@list.ru
ORCID iD: 0000-0002-2493-5498
SPIN-code: 4069-2346

MD, PhD, D.Sc., Professor, Head of the Department of Thermal Injuries Unit; Head of the Laboratory of Experimental Surgery

Russian Federation, 2, Litovskay street, Saint-Peterburg, 194100; 3, Budapeshtskaya street, Saint-Petersburg, 192242

Denis V. Kostyakov

Saint Petersburg I.I. Dzhanelidze Research Institute of Emergency Medicine

Author for correspondence.
Email: kosdv@list.ru
ORCID iD: 0000-0001-5687-7168
SPIN-code: 9966-5821

MD, PhD, researcher of the Department of Thermal Injuries Unit

Russian Federation, 3, Budapeshtskaya street, Saint-Petersburg, 192242

Marat S. Asadulaev

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN-code: 3336-8996
Scopus Author ID: 57191618743

MD, clinical resident, laboratory assistant in the Laboratory of Experimental Surgery

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Anton S. Shabunin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Peter the Great Saint Petersburg Polytechnic University

Email: anton-shab@yandex.ru
ORCID iD: 0000-0002-8883-0580
SPIN-code: 1260-5644
Scopus Author ID: 57191623923

laboratory assistant in the Laboratory of Experimental Surgery; PhD student

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603; 29, Polytechnitcheskaya street, St.-Petersburg, 195251

Vladimir E. Yudin

Peter the Great Saint Petersburg Polytechnic University

Email: yudin@hq.macro.ru
ORCID iD: 0000-0002-5517-4767
SPIN-code: 4996-7540
Scopus Author ID: 7103377720

Dr. Phys.-Math. Sci., Professor, Director of Laboratory of Polymeric Materials for Tissue Engeneering and Transplantology

Russian Federation, 29, Polytechnitcheskaya street, St.-Petersburg, 195251

Nataliya V. Smirnova

Peter the Great Saint Petersburg Polytechnic University; Institute of Macromolecular Compounds of the Russian Academy of Sciences

Email: nvsmirnoff@yandex.ru

PhD, Senior Researcher of Laboratory of Polymer Materials for Tissue Engineering and Transplantology; researcher in Laboratory of Mechanics of Polymers and Composite Materials

Russian Federation, 29, Polytechnitcheskaya street, St.-Petersburg, 195251; 31, Bolshoy prospect, St-Petersburg 199004

Anna V. Radeeva

Saint Petersburg State Pediatric Medical University

Email: anyawinteranya@gmail.com
ORCID iD: 0000-0002-6152-4276

student

Russian Federation, 2, Litovskay street, Saint-Peterburg, 194100

Moisei B. Paneiakh

Saint Petersburg State Pediatric Medical University

Email: moisey031190@gmail.com
ORCID iD: 0000-0002-2527-9058

Assistant Professor, Department of Pathological Anatomy at the Rate of Forensic Medicine

Russian Federation, 2, Litovskay street, Saint-Peterburg, 194100

References

  1. Агаджанова К.В. Ожоги: классификация и подходы к лечению в зависимости от степени тяжести // Colloquium-journal. – 2020. – № 1. – С. 4–7. [Agadzhanova KV. Burns: classification and treatment approaches depending on severity. Colloquium-journal. 2020;(1):4-7. (In Russ.)]
  2. Toppi J, Cleland H, Gabbe B. Severe burns in Australian and New Zealand adults: Epidemiology and burn centre care. Burns. 2019;45(6):1456-1461. https://doi.org/10.1016/j.burns.2019.04.006.
  3. Мордяков А.Е. Оценка местного лечения ран донорских мест у пациентов с глубокими ожогами // Хирургия. Журнал им. Н.И. Пирогова. – 2018. – № 11. – С. 49–52. [Mordyakov AE. Evaluation of local treatment of donor sites wounds in patients with deep burns. Khirurgiia (Mosk). 2018;(11):49-52. (In Russ.)]. https://doi.org/10.17116/hirurgia20181114.
  4. Плешков А.С. Применение донорской кожи при лечении ран // Трансплантология. – 2016. – № 1. – С. 36–46. [Pleshkov AS. The use of allograft skin in burn care. Transplantologiia. 2016;(1):36-46. (In Russ.)]
  5. Lang TC, Zhao R, Kim A, et al. A critical update of the assessment and acute management of patients with severe burns. Adv Wound Care (New Rochelle). 2019;8(12):607-633. https://doi.org/10.1089/wound.2019.0963.
  6. Almodumeegh A, Heidekrueger PI, Ninkovic M, et al. The MEEK technique: 10-year experience at a tertiary burn centre. Int Wound J. 2017;14(4):601-605. https://doi.org/10.1111/iwj.12650.
  7. Houschyar KS, Tapking C, Nietzschmann I, et al. Five years experience with meek grafting in the management of extensive burns in an adult burn center. Plast Surg (Oakv). 2019;27(1):44-48. https://doi.org/10.1177/2292550318800331.
  8. Balli M, Vitali F, Janiszewski A, et al. Autologous micrograft accelerates endogenous wound healing response through ERK-induced cell migration. Cell Death Differ. 2020;27(5):1520-1538. https://doi.org/ 10.1038/s41418-019-0433-3.
  9. Trovato L, Naro F, D’Aiuto F, Moreno F. Promoting tissue repair by micrograft stem cells delivery. Stem Cells Int. 2020;2020:1-2. https://doi.org/10.1155/2020/2195318.
  10. Гуменюк А.С., Ушмаров Д.Е., Гуменюк С.Е., и др. Перспективы применения многослойных раневых покрытий на основе хитозана в стоматологической практике // Кубанский научный медицинский вестник. – 2020. – Т. 27. – № 1. – С. 27–39. [Gumenyuk AS, Ushmarov DE, Gumenyuk SE, et al. Application of multi-layer chitosan-based wound dressings in dentistry. Kubanskii nauchnyi meditsinskii vestnik. 2020;27(1):27-39. (In Russ.)]. https://doi.org/10.25207/1608-6228-2020-27-1-27-39.
  11. Григорьян А.Ю., Бежин А.И., Панкрушева Т.А., и др. Многокомпонентное раневое покрытие в лечении экспериментальной гнойной раны // Бюллетень сибирской медицины. – 2019. – Т. 18. – № 3. – С. 29–36. [Grigor’yan AY, Bezhin AI, Pankrusheva TA, et al. Multicomponent wound coating in treatment of an experimental, purulent wound. Bulletin of Siberian medicine. 2019;18(3):29-36. (In Russ.)]. https://doi.org/10.20538/1682-0363-2019-3-29-36.
  12. Greenhalgh DG. Management of burns. N Engl J Med. 2019;380(24):2349-2359. https://doi.org/10.1056/NEJMra1807442.
  13. Поляков А.В., Богданов С.Б., Афанасов И.М., и др. Использование раневых покрытий на основе хитозана «ХитоПран» в лечении больных с ожоговой травмой // Инновационная медицина Кубани. – 2019. – № 3. – С. 25–31. [Polyakov AV, Bogdanov SB, Afanasov IM, et al. Application of chitosan-based wound coatings ‘ChitoPran’ in the treatment of patients with burn trauma. Innovatsionnaya meditsina Kubani. 2019;(3):25-31. (In Russ.)]. https://doi.org/10.35401/2500-0268-2019-15-3-25-31.
  14. Богданов С.Б., Каракулев А.В., Поляков А.В., и др. Совершенствование комплексного применения клеточной терапии и биологических раневых покрытий в лечении пациентов с дефектами кожных покровов // Пластическая хирургия и эстетическая медицина. – 2019. – № 4. – С. 43–49. [Bogdanov SB, Karakulev AV, Polyakov AV, et al. Sovershenstvovanie kompleksnogo primeneniya kletochnoy terapii i biologicheskikh ranevykh pokrytiy v lechenii patsientov s defektami kozhnykh pokrovov. Plasticheskaya khirurgiya i esteticheskaya meditsina. 2019;(4):43-49. (In Russ.)]. https://doi.org/10.17116/plast.hirurgia201904143.
  15. Жерносеченко А., Исайкина Я., Таисия М. Выбор носителя и условий дифференцировки мезенхимальных стволовых клеток для восстановления костной ткани // Наука и инновации. – 2019. – № 5. – С. 58–61. [Zhernosechenko A, Isaykina Y, Taisiya M. The choice of scaffold and conditions for mesenchymal stem cells differentiation for the bone repair. Nauka i innovatsii. 2019;(5):58-61. (In Russ.)]
  16. Дешевой Ю.Б., Насонова Т.А., Добрынина О.А., и др. Опыт применения сингенных мультипотентных мезенхимальных стволовых клеток (ММСК) жировой ткани для лечения тяжелых радиационных поражений кожи в эксперименте // Радиационная биология. Радиоэкология. – 2020. – Т. 60. – № 1. – С. 26–33. [Deshevoy YB, Nasonova TA, Dobrynina OA, et al. experience of application of syngeneic multipotent mesenchymal stem cells (MMSC) adipose tissue for Treatment of Severe Radiation Skin Lesions at Various Intervals after Exposure in the Experiment. Radiats Biol Radioecol. 2020;60(1):26-33. (In Russ.)]. https://doi.org/10.31857/S0869803120010063.
  17. Ahmadi AR, Chicco M, Huang J, et al. Stem cells in burn wound healing: A systematic review of the literature. Burns. 2019;45(5):1014-1023. https://doi.org/10.1016/j.burns.2018.10.017.
  18. Shabunin A, Yudin V, Dobrovolskaya I, et al. Composite wound dressing based on chitin/chitosan nanofibers: processing and biomedical applications. Cosmetics. 2019;6(1):16. https://doi.org/10.3390/cosmetics6010016.

Supplementary files

Supplementary Files
Action
1. Fig. 1. The results of measuring the area of wounds in the analyzed groups of animals during the follow-up period: MADP — microautodermoplasty; CPA — aliphatic copolyamide; AMSC — adipogenic mesenchymal stem cells

Download (530KB)
2. Fig. 2. The results of assessing the dynamics of the wound healing index in the analyzed groups of animals during the follow-up period: MADP — microautodermoplasty; CPA — aliphatic copolyamide; AMSC — adipogenic mesenchymal stem cells

Download (508KB)
3. Fig. 3. Comparison of the dynamics of the healing index (median values) in the analyzed groups of animals: MADP — microautodermoplasty; CPA — aliphatic copolyamide; AMSC — adipogenic mesenchymal stem cells

Download (114KB)
4. Fig. 4. A slice of the new skin on day 7 after microautodermoplasty (coated with aliphatic copolyamide) and the administration of adipogenic mesenchymal stem cells. Thinning of the epidermis and the pseudocyst formation process. Hematoxylin and eosin staining, magnification by 100×

Download (271KB)
5. Fig. 5. A slice of the new skin on day 21 after microautodermoplasty (coated with aliphatic copolyamide) and the administration of adipogenic mesenchymal stem cells. Deposition of calcium salts surrounded by giant multinucleated cells. Hematoxylin and eosin staining, magnification by 100×

Download (197KB)
6. Fig. 6. A slice of the new skin on day 28 after microautodermoplasty (coated with an aliphatic copolyamide) and the administration of adipogenic mesenchymal stem cells. Giant cell granuloma with deposition of calcium salts. Hematoxylin and eosin staining, magnification by 100×

Download (328KB)
7. Fig. 7. A slice of the new skin on day 28 after microautodermoplasty (coated with an aliphatic copolyamide) and the administration of adipogenic mesenchymal stem cells. Thinning, dystrophic changes in the epidermis, active horny pseudocyst. Hematoxylin and eosin stain, magnification by 400×

Download (222KB)

Statistics

Views

Abstract: 357

PDF (Russian): 63

PDF (Chinese): 3

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c) 2020 Gordienko V.A., Zinoviev E.V., Kostyakov D.V., Asadulaev M.S., Shabunin A.S., Yudin V.E., Smirnova N.V., Radeeva A.V., Paneiakh M.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies