Functional activity of the maxillofacial region muscles in children with arthrogryposis multiple congenita

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Disorders of the maxillofacial region in children with аrthrogryposis multiplex congenita can be congenital or occur as secondary changes. The lower jaw and associated muscles play important roles in the functioning and development of the maxillofacial region. In children with аrthrogryposis multiplex congenita, the functional activity of the muscles of the maxillofacial region has not been studied.

AIM: To estimate the functional activity of the muscles of the maxillofacial region in children with аrthrogryposis multiplex congenita.

MATERIALS AND METHODS: Surface electromyography was used to examine the masticatory and facial muscles of 47 children aged 3–17 years with arthrogryposis (main group) and 20 healthy children with orthognathic bite (control group). The main and control groups were examined by a dentist and had not previously received orthodontic treatment. The bioelectric activities of the temporalis and masseter muscles on the right and left sides were simultaneously registered at rest and during functional tests (opening of the mouth, moving the lower jaw forward, jaw compression, and chewing). The average activity amplitudes were taken into account, and asymmetry coefficients were calculated. The obtained data are statistically processed.

RESULTS: Electromyography results, according to different functional tests, revealed disorders in 65%–88% of children with аrthrogryposis multiplex congenita. In all samples, the tonic activity of the masticatory muscles increased at rest, the amplitude of the activity of masseter and temporalis muscles decreased, signs of an imbalance of the masticatory muscles such as the hyperactivation of the temporalis muscle compared with the masseter muscle with jaw compression and chewing were noted, and muscle asymmetry indices increased. The frequency and degree of functional muscle disorders prevailed in children with deciduous and temporary occlusion.

CONCLUSIONS: Arthrogryposis multiplex congenita in children is characterized by a high frequency of impaired functional activity of the muscles of the maxillofacial region, which can negatively affect bite formation, chewing function, and articulation.

Full Text

Restricted Access

About the authors

Margarita V. Savina

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
SPIN-code: 5710-4790

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Olga E. Agranovich

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN-code: 4393-3694
Scopus Author ID: 56913386600
ResearcherId: B-3334-2019

MD, PhD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Anna A. Baindurashvili

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Academician I.P. Pavlov First St. Petersburg State Medical University

Email: korably2001@mail.ru
ORCID iD: 0009-0009-7823-0678
SPIN-code: 1916-0319

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg; Saint Petersburg

Alina S. Farkhullina

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Academician I.P. Pavlov First St. Petersburg State Medical University

Email: a.lish92@mail.ru
ORCID iD: 0009-0007-4680-8303
SPIN-code: 5524-1404

MD, maxillofacial surgeon

Russian Federation, Saint Petersburg; Saint Petersburg

Ekaterina V. Petrova

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: pet_kitten@mail.ru
ORCID iD: 0000-0002-1596-3358
SPIN-code: 2492-1260
Scopus Author ID: 57194563255

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Evgeny D. Blagovechtchenski

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; National Research University Higher School of Economics

Email: eblagovechensky@hse.ru
ORCID iD: 0000-0002-0955-6633
SPIN-code: 2811-5723
Scopus Author ID: 6506349269
ResearcherId: B-5037-2014

PhD, Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg; Moscow

References

  1. Gagnon M, Caporuscio K, Veilleux L-N, et al. Muscle and joint function in children living with arthrogryposis multiplex congenita: a scoping review. Am J Med Genet Part C. 2019;181C:410–426. doi: 10.1002/ajmg.c.31726
  2. Behard M, Sesque A, Barthelemy I, et al. Arthrogryposis multiplex congenital and limitation of mouth opening: presentation of a case and review of the literature. J Stomatol Oral Maxilofac Surg. 2021;122(2021):101–106. doi: 10.1016/j.jormas.2020.05.017
  3. Nordoneh TP, Li P. Arthrogryposis multiplex congenita in association with bilateral temporomandibular join hypomobility: report of case and review of literature. J Oral Maxillofacial Sug. 2010;68:1197–1204. doi: 10.1016/j.joms.2008
  4. Epstein JB, Wittenberg GJ. Maxillofacial manifestations and management of artrogryposis: literature review and case report. J Oral Maxillofacc Surg. 1987;45:274–279. doi: 10.1016/0278-2391(87)90129-7
  5. Heffez L, Doku HC, O’Donnell JP. Arthrogryposis multiplex complex involving the temporomandibular joint. J Oral Maxillofacc Surg. 1985;43(7):539–542. doi: 10.1016/s0278-2391(85)80035-5
  6. Uvarova AA, Mamedov AA. Vliyanie gipertonusa zhevatel’nykh myshts na chelyustno-litsevuyu oblast’ u detei i podrostkov. In: Science and technology innovations. Sbornik statei VII mezhdunarodnoi nauchno-prakticheskoi konferentsii. Petrozavodsk: Novaya nauka; 2022. P. 105–109. doi: 10.46916/25032022-3-978-5-00174-517-4
  7. Kosolapova IV, Dorokhov EV, Kovalenko ME, et al. Kharakteristika bioelektricheskikh parametrov sobstvenno zhevatel’nykh i nadpod”yazychnykh myshts u detei s fiziologicheskoi i distal’noi okklyuziei. Prikladnye informatsionnye aspekty meditsiny. 2022;25(3):4–13. (In Russ.)
  8. Kosolapova IV, Dorokhov EV, Kovalenko ME, et al. Functional interaction of chewing muscles in children with dentoalveolar system anomalies. RUDN Journal of Medicine. 2021;25(2):136–146. (In Russ.) doi: 10.22363/2313-0245-2021-25-2-136-146
  9. Silin AV, Satygo EA. The state of the functional system of the maxillofacial region in children during early replacement bite. Russian Dental Journal. 2013;(2):27–29. (In Russ.)
  10. Naeije M, McCarroll RS, Weijs WA. Electromyographic activity of the human masticatory muscles during submaximal clenching in the inter-cuspal position. J Oral Rehabil. 1989;16(1):63–70. doi: 10.1111/j.1365-2842.1989.tb01318.x
  11. Quilis M. Oromotor dysfunction in neuromuscular disorders: evaluation and treatment. In: Neuromuscular disorders of infancy, childhood and adolescence. Ed. by B.T. Darras, H. Jr. Royden Jones, M.M. Ryan. Elsevier; 2015. Р. 958–974. doi: 10.1016/B978-0-12-417044-5.00047-0
  12. Wang W. Congenital mandibular coronoid process hyperplasia and associated diseases. Oral Diseases. 2022;1(11). doi: 10.1111/odi.14400
  13. Thomas JA, Chiu-Yeh M, Moriconi ES. Maxillofacial implications and surgical treatment of arthrogryposis multiplex congenital. Compend Contin Educ Dent. 2001;22(7):588–592. (In Russ.)
  14. Okeson JP. Management of temporomandibular disorders and occlusion. Elsevier Health Sciences, 2007.
  15. Gallo LM, Brasi M, Ernst B, et al. Relevance of mandibular helical axis analysis in function and disfunction TMJs. J Biomech. 2006;39:1716–1725.
  16. Popov SA, Satygo ES. Dinamika pokazatelei funktsional’noi aktivnosti zhevatel’nykh myshts u detei s distal’noi okklyuziei v period rosta i razvitiya chelyustei. Vestnik Sankt-Peterburgskoi gosudarstvennoi meditsinskoi akademii poslediplomnogo obrazovaniya. 2011;(3):101–105. (In Russ.)
  17. Khairutdinova AF, Gerasimova LP, Usmanova I.N. Elektromiograficheskoe issledovanie funktsional’nogo sostoyaniya zhevatel’noi gruppy myshts pri myshechno-sustavnoi disfunktsii visochno-nizhnechelyustnogo sustava. Kazanskii meditsinskii zhurnal. 2007;88(5):440–444. (In Russ.)
  18. Tartaglia GM, Rodrigues da Silva MA, Bottini S, et al. Masticatory muscle activity during maximum voluntary clench in different research diagnostic criteria for temporomandibular disorders (RDC/TMD) groups. Manual Therapy. 2008;13:434–440.
  19. Domenyuk DA, Davydov BN, Dmitrienko SV, et al. Rezul’taty kompleksnoi otsenki funktsional’nogo sostoyaniya zubochelyustnoi sistemy u patsientov s fiziologicheskoi okklyuziei zubnykh ryadov (chast’ I). Institut stomatologii. 2018;77(4):78–82. (In Russ.)
  20. Mioche L, Bourdiol P, Martin JF, et al. Variations in human masseter and temporalis muscle activity related to food texture during free and side-imposed mastication. Arch Oral Biol. 1999;44(12):1005–1012. doi: 10.1016/S0003-9969(99)00103-X
  21. Wang WH, Xu B, Zhang BJ, et al. Temporomandibular joint ankylosis contributing to coronoid process hyperplasia. Int. J Oral Maxillofac Surg. 2016;45(10):1229–1233. doi: 10.1016/j.ijom.2016.04.018
  22. Pichugina EN, Konnov VV, Frolkina K., et al. Sovremennye metody diagnostiki disfunktsii visochno-nizhnechelyustnogo sustava. Aspirantskii vestnik Povolzh’ya. 2022;22(1):32–37. (In Russ.) doi: 10.55531/2072-2354.2022.22.1.32-37
  23. Puche M, Guijarro-Martínez R, Pérez-Herrezuelo G, et al. The hypothetical role of congenital hypotonia in the development of early coronoid hyperplasia. Journal of Cranio-Maxillo-Facial Surgery. 2012;40(6):155–158. doi: 10.1016/j.jcms.2011.08.005
  24. Drobakha KV, Drobysheva NS, Klimova TV, et al. Osobennosti funktsional’nogo sostoyaniya chelyustno-litsevoi oblasti u patsientov s transversal’nymi anomaliyami, obuslovlennymi giperplaziei myshchelkovogo otrostka. Ortodontiya. 2018;(1(81)):16–23. (In Russ.)
  25. Gizzatullina FV, Mannanova FF. Kharakteristika deyatel’nosti zhevatel’nykh myshts u detei s transversal’noi anomaliei okklyuzii v smennom prikuse. Meditsinskaya nauka i obrazovanie Urala. 2014;15(1):60–63. (In Russ.)
  26. Alshammari A, Almotairy N, Kumar A, et al. Effect of malocclusion on jaw motor function and chewing in children: a systematic review. Clin Oral Investig. 2022;26(3):2335–2351. doi: 10.1007/s00784-021-04356-y
  27. Moss ML. The functional matrix hypothesis revisited. The role of mechanotransduction. Am J Orthod Dentofacial Orthop. 1997;112(1):8–11. doi: 10.1016/s0889-5406(97)70267-1
  28. Kosolapova IV, Dorokhov EV, Kovalenko ME. Funktsional’nye osobennosti zhevatel’noi muskulatury u detei s fiziologicheskoi okklyuziei. Krymskii zhurnal eksperimental’noi i klinicheskoi meditsiny. 2021;25(2):34–39. (In Russ.) doi: 10.37279/2224-6444-2021-11-2-34-39

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Incidence of disorders of functional activity of the masticatory muscles according to sEMG in pediatric patients with AMC during functional tests

Download (87KB)
3. Fig. 2. EMG of the masticatory muscles when the lower jaw moves forward (channel 1, m. temporalis on the right; channel 2, m. masseter on the right; channel 3, m. temporalis on the left; channel 4, m. masseter on the left; scale 250 ms/75 µV): (a) in a 7-year-old child with AMC, according to sEMG, an increase in the bioelectrical activity of m. temporalis on both sides is noted, with pronounced asymmetry in the activity of m. masseter between the right and left sides with higher activity on the left (ASI masseter 75%); (b) in a 7-year-old child in the control group, when the lower jaw moves forward, symmetrical activity is recorded only with m. masseter

Download (300KB)
4. Fig. 3. EMG of the masticatory muscles when opening the mouth (channel 1, m. temporalis on the right; channel 2, m. masseter on the right; channel 3, m. temporalis on the left; channel 4, m. masseter on the left; scale 250 ms/40 µV): (a) a 10-year-old child with AMC and limited mouth opening; according to sEMG, the tonic activity of m. temporalis on the left and m. masseter on both sides is increased; (b) tonic activity of the masticatory muscles when opening the mouth in a 10-year-old child in the control group with the recorded symmetrical activity of the m. masseter with an amplitude of lower than 40 μV

Download (225KB)
5. Fig. 4. EMG of masticatory muscles with AMC when clenching the jaw (channel 1, m. temporalis on the right; channel 2, m. masseter on the right; channel 3, m. temporalis on the left; channel 4, m. masseter on the left; scale 250 ms/150 μV): (a) EMG of a 7-year-old child with isolated damage to the upper extremities; examination revealed malocclusion, orthognathia, and speech articulation disorders; according to sEMG data, a pronounced asymmetry of the functional activity of m. temporalis and m. masseter (S < D) was noted (ASI total 85%); (b) EMG of a 9-year-old child with a generalized form of arthrogryposis; pronounced imbalance of the masticatory muscles on both sides (D = S) with a predominance of m. temporalis activity (ACI = –52%)

Download (231KB)
6. Fig. 5. EMG of the masticatory muscles when a 10-year-old child chews normally (a) and with AMC (b): channel 1, m. temporalis on the right; channel 2, m. masseter on the right; channel 3, m. temporalis on the left; channel 4, m. masseter on the left. Scale 250 ms/500 µV: (a) symmetrical activity of m. temporalis and m. masseter during chewing is normal; (b) in a child with a generalized form of AMC, the bioelectrical activity of m. temporalis prevails compared with the activity of m. masseter on both sides (ACI coefficient = –5), the asymmetry of the functional activity of m. masseter and m. temporalis is pronounced, activity on the left is higher (ASI total 65%)

Download (214KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies