Иннервация костей. Вегетативная иннервация. Часть вторая (обзор литературы)



Цитировать

Полный текст

Аннотация

Периферические нервы участвуют в развитии, восстановлении и ремоделировании кости..  Симпатическая нервная представляет собой одно из основных связующих звеньев между центральной нервной системой  и скелетом, что подтверждается рядом анатомических, фармакологических и генетических исследований, посвященных передаче сигналов через β-адренорецепторы (βАР) в костных клетках.

Цель — проанализировать публикации, посвященные вкладу автономной нервной системы в контроль метаболизма костной ткани

Материалы и методы. Поиск данных осуществляли в базах научной литературы PubMed, Google Scholar, Cochrane Library, Crossref, eLibrary на английском и русском языках. В процессе написания статьи использовали метод анализа и синтеза информации. Большая часть работ, включенных в данный обзор, опубликована за последние 20 лет.

Результаты: Данные экспериментов in vitro и vivo указывают на то, что адренергические нервные структуры   способствует потере костной массы за счет одновременного усиления катаболизма костей и снижения анаболизма костей.  Активация холинэргических нервных структур подавляет резорбцию костей, что приводит к нарастанию костной массы

Выводы: Влияние вегетативной нервной системы на ремоделирование костной ткани и его основные механизмы в значительной степени изучены в исследованиях на экспериментальных моделях грызунов, однако значимость этих результатов для клинической патофизиологии человека до сих пор остаётся предметом дискуссий, и, независимо от их будущей валидности и практического использования в настоящее время, эти данные представляют собой перспективную базу  для дальнейших исследований

Полный текст

Доступ закрыт

Об авторах

Алина Михайловна Ходоровская

Национальный медицинский исследовательский центр детской травматологии и ортопедии имени Г.И. Турнера

Автор, ответственный за переписку.
Email: alinamyh@gmail.com
ORCID iD: 0000-0002-2772-6747
SPIN-код: 3348-8038

MD

Россия, Санкт-Петербург

Ольга Евгеньевна Агранович

Национальный медицинский исследовательский центр детской травматологии и ортопедии имени Г.И. Турнера

Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN-код: 4393-3694

д-р мед. наук

Россия, Санкт-Петербург

Маргарита Владимировна Савина

Национальный медицинский исследовательский центр детской травматологии и ортопедии имени Г.И. Турнера

Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
SPIN-код: 5710-4790
Scopus Author ID: 57193277614

канд. мед. наук

Россия, Санкт-Петербург

Список литературы

  1. Lerner, Ulf H. The Role of Skeletal Nerve Fibers in Bone Metabolism. The Endocrinologist 10(6), 2000. P: 377-382.
  2. Brazill J.M., Beeve A.T., Craft C.S., et al. Nerves in bone: evolving concepts in pain and anabolism // J Bone Miner Res. 2019. Vol. 34, N 8. P. 1393–1406. doi: 10.1002/jbmr.3822
  3. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O'Leary P, Mantyh PW. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155-66. doi: 10.1016/s0306-4522(02)00165-3
  4. Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res. (1991) 264:469–80. doi: 10.1007/BF00319037
  5. Ходоровская А.М., Агранович О.Е., Савина М.В., Гаркавенко Ю.Е., Мельченко Е.В., Филин Я.А., Горелик К.Э. Иннервация костей. Сенсорная иннервация. Часть первая (обзор литературы) // Ортопедия, травматология и восстановительная хирургия детского возраста. - 2024. - Т. 12. - №4. - C. 511-522. doi: 10.17816/PTORS642092
  6. Roche F, Pichot V, Mouhli-Gasmi L, Monier M, Barthélémy JC, Berger M, Celle S, Chouchou F. Anatomy and physiology of the autonomic nervous system: Implication on the choice of diagnostic/monitoring tools in 2023. Rev Neurol (Paris). 2024;180(1-2):42-52. doi: 10.1016/j.neurol.2023.12.003
  7. Johnson B. K. Physiology of the autonomic nervous system. Basic sciences in anesthesia. Cham: Springer Nature Switzerland, 2025. P: 377-386.
  8. Chhatar S, Lal G. Role of adrenergic receptor signalling in neuroimmune communication. Curr Res Immunol. 2021 Nov 25; 2:202-217. doi: 10.1016/j.crimmu.2021.11.001.
  9. Tabarowski Z, Gibson-Berry K, Felten SY. Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochem. 1996;98(4):453-457. doi: 10.1016/S0065-1281(96)80013-4
  10. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20. https://doi.org/10.1038/nature03398
  11. Xia R, Peng H, Zhu X, Suolang W, Pambayi STL, Yang X, Zeng Y, Shen B. Autonomic Nervous System in Bone Remodeling: From Mechanisms to Novel Therapies in Orthopedic Diseases. Orthop Surg. 2025;17(6):1561-1576. doi: 10.1111/os.70010
  12. Tomlinson R.E., Christiansen B.A., Giannone A.A., et al. The role of nerves in skeletal development, adaptation, and aging // Front Endocrinol (Lausanne). 2020. Vol. 11. P. 646. doi: 10.3389/fendo.2020.00646
  13. Rösch G, Zaucke F, Jenei-Lanzl Z. Autonomic nervous regulation of cellular processes during subchondral bone remodeling in osteoarthritis. Am J Physiol Cell Physiol. 2023;325(2):365-384. doi: 10.1152/ajpcell.00039.2023
  14. Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305-317. doi: 10.1016/s0092-8674(02)01049-8
  15. Sandhu HS, Herskovits MS, Singh IJ. Effect of surgical sympathectomy on bone remodeling at rat incisor and molar root sockets. Anat Rec. 1987;219(1):32-38. doi: 10.1002/ar.1092190107
  16. Schwartzman RJ. New treatments for reflex sympathetic dystrophy. N Engl J Med. 2000;343(9):654-656. doi: 10.1056/NEJM200008313430911
  17. Mlakar V, Jurkovic Mlakar S, Zupan J, Komadina R, Prezelj J, Marc J. ADRA2A is involved in neuro-endocrine regulation of bone resorption. J Cell Mol Med 2015;19:1520–1529/ doi: 10.1111/jcmm.12505
  18. Fonseca TL, Jorgetti V, Costa CC, Capelo LP, Covarrubias AE, Moulatlet AC, Teixeira MB, Hesse E, Morethson P, Beber EH, Freitas FR, Wang CC, Nonaka KO, Oliveira R, Casarini DE, Zorn TM, Brum PC, Gouveia CH. Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res 2011;26: 591–603. doi: 10.1002/jbmr.243.
  19. Kondo H, Nifuji A, Takeda S, Ezura Y, Rittling SR, Denhardt DT, et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem. 2005;280(34):30192–200. https://doi.org/10.1074/jbc.M504179200.
  20. Takeda S., Elefteriou F., Levasseur R., et al. Leptin regulates bone formation via the sympathetic nervous system // Cell. 2002. Vol. 111, N 3. P. 305–317. doi: 10.1016/s0092-8674(02)01049-8
  21. Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J, et al. Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci USA. 2006;103(45):16876-16881. doi: 10.1073/pnas.0604234103
  22. Bonnet N, Benhamou CL, Beaupied H, Laroche N, Vico L, Dolleans E, et al. Doping dose of salbutamol and exercise: deleterious effect on cancellous and cortical bones in adult rats. J Appl Physiol (1985). 2007;102(4):1502–9. https://doi.org/10.1152/japplphysiol.00815.2006.
  23. Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med. 2011;208(4):841–51. https://doi.org/10.1084/jem.20102608.
  24. de Vries F, Souverein PC, Cooper C, Leufkens HG, van Staa TP. Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and the Netherlands. Calcif Tissue Int. 2007;80:69-75. doi: 10.1007/s00223-006-0213-1
  25. Meisinger C, Heier M, Lang O, Doring A. Beta-blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Augsburg cohort study. Osteoporos Int. 2007;18(9):1189–95. https://doi.org/10.1007/s00198-007-0354-8.
  26. Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA. 2004;292(11):1326-1332. doi: 10.1001/jama.292.11.1326
  27. Toulis KA, Hemming K, Stergianos S, Nirantharakumar K, Bilezikian JP. β -adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int. 2014;25(1):121-129. doi: 10.1007/s00198-013-2498-z
  28. Reid IR, Lucas J, Wattie D, Horne A, Bolland M, Gamble GD, et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab. 2005;90(9):5212-5216. doi : 10.1210/jc.2005-0573
  29. Levasseur R, Dargent-Molina P, Sabatier JP, Marcelli C, Breart G. Beta-blocker use, bone mineral density, and fracture risk in older women: results from the Epidemiologie de l'Osteoporose prospective study. J Am Geriatr Soc. 2005;53(3):550–2. https://doi.org/10.1111/j.1532-5415.2005.53178_7.x.
  30. Veldhuis-Vlug AG, Oei L, Souverein PC, Tanck MW, Rivadeneira F, Zillikens MC, et al. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. Osteoporos Int. 2015;26(7):2019-2027. doi: 10.1007/s00198-015-3087-0
  31. Veldhuis-Vlug AG, Tanck MW, Limonard EJ, Endert E, Heijboer AC, Lips P, et al. The effects of beta-2 adrenergic agonist and antagonist on human bone metabolism: a randomized controlled trial. Bone. 2015;71:196-200. doi: 10.1016/j.bone.2014.10.024
  32. Reid IR, Lucas J, Wattie D, Horne A, Bolland M, Gamble GD, et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab. 2005;90(9):5212–6. https://doi.org/10.1210/jc.2005-0573.
  33. Choi HJ, Park C, Lee YK, Ha YC, Jang S, Shin CS. Risk of fractures in subjects with antihypertensive medications: a nationwide claim study. Int J Cardiol. 2015; 184:62–7. https://doi.org/10.1016/j.ijcard.2015.01.072.
  34. Rejnmark L, Vestergaard P, Kassem M, Christoffersen BR, Kolthoff N, Brixen K, et al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int. 2004;75(5):365-372. doi: 10.1007/s00223-004-0222-x
  35. Gonnelli S, Caffarelli C, Maggi S, Guglielmi G, Siviero P, Rossi S, et al. Effect of inhaled glucocorticoids and beta(2) agonists on vertebral fracture risk in COPD patients: the EOLO study. Calcif Tissue Int. 2010;87(2):137–43. https://doi.org/10.1007/s00223-010-9392-x.
  36. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk in patients with chronic lung diseases treated with bronchodilator drugs and inhaled and oral corticosteroids. Chest. 2007;132(5):1599-1607. doi: 10.1378/chest.07-1092
  37. Veldhuis-Vlug AG, El Mahdiui M, Endert E, Heijboer AC, Fliers E, Bisschop PH. Bone resorption is increased in pheochromocytoma patients and normalizes following adrenalectomy. J Clin Endocrinol Metab. 2012;97(11):E2093-2097. doi: 10.1210/jc.2012-2823
  38. Kim BJ, Lee SH & Koh JM. Effects of Sympathetic Activity on Human Skeletal Homeostasis: Clinical Evidence from Pheochromocytoma. Clinic Rev Bone Miner Metab 17, 40–47 (2019). https://doi.org/10.1007/s12018-019-9257-4
  39. Elefteriou F. Impact of the Autonomic Nervous System on the Skeleton. Physiol Rev. 2018 Jul 1;98(3):1083-1112. doi: 10.1152/physrev.00014.2017.
  40. Khosla S, Drake MT, Volkman TL, Thicke BS, Achenbach SJ, Atkinson EJ, et al. Sympathetic beta1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest. 2018;128(11):4832–42. https://doi.org/10.1172/jci122151.
  41. Sseur R, Sabatier JP, Potrel-Burgot C, Lecoq B, Creveuil C, Marcelli C. Sympathetic nervous system as transmitter of mechanical loading in bone. Joint Bone Spine. 2003;70:515-519. doi: 10.1016/j.jbspin.2003.07.006
  42. Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol. 2007 Apr;34(4):377-84. doi: 10.1111/j.1440-1681.2007.04590.x.
  43. Farr JN, Charkoudian N, Barnes JN, Monroe DG, McCready LK, Atkinson EJ, et al. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab. 2012;97(11):4219–27. https://doi.org/10.1210/jc.2012-2381.
  44. Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res. 2025 Mar 20;12(1):13. doi: 10.1186/s40779-025-00600-8.
  45. En-Nosse M, Hartmann S, Trinkaus K, Alt V, Stigler B, Heiss C, Kilian O, Schnettler R, Lips KS. Expression of non-neuronal cholinergic system in osteoblast-like cells and its involvement in osteogenesis. Cell Tissue Res. 2009 Nov;338(2):203-15. doi: 10.1007/s00441-009-0871-1.
  46. Kauschke V, Lips KS, Heiss C, Schnettler R. Expression of muscarinic acetylcholine receptors M3 and M5 in osteoporosis. Med Sci Monit. 2014 May 27;20:869-74. doi: 10.12659/MSM.890217.
  47. Weng W, Li H, Zhu S. An Overlooked Bone Metabolic Disorder: Cigarette Smoking-Induced Osteoporosis. Genes (Basel). 2022 Apr 30;13(5):806. doi: 10.3390/genes13050806
  48. Wu LZ, Duan DM, Liu YF, Ge X, Zhou ZF, Wang XJ. Nicotine favors osteoclastogenesis in human periodontal ligament cells co-cultured with CD4(+) T cells by upregulating IL-1β. Int J Mol Med. 2013;31:938-942. doi: 10.3892/ijmm.2013.1259
  49. Dénes A, Boldogkoi Z, Uhereczky G, Hornyák A, Rusvai M, Palkovits M, Kovács KJ. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience. 2005;134(3):947-63. doi: 10.1016/j.neuroscience.2005.03.060
  50. Liu Q, Wu Y, Wang H, Jia F, Xu F. Viral Tools for Neural Circuit Tracing. Neurosci Bull. 2022 Dec;38(12):1508-1518. doi: 10.1007/s12264-022-00949-z
  51. Asmus SE, Parsons S, Landis SC. Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J Neurosci. 2000 Feb 15;20(4):1495-504. doi: 10.1523/JNEUROSCI.20-04-01495.2000.
  52. Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar-Namdar M, Zallone A, Kovács KJ, Yirmiya R, Bab I. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15455-60. doi: 10.1073/pnas.1206061109.
  53. Gadomski S, Fielding C, García-García A, Korn C, Kapeni C, Ashraf S, Villadiego J, Toro RD, Domingues O, Skepper JN, Michel T, Zimmer J, Sendtner R, Dillon S, Poole KES, Holdsworth G, Sendtner M, Toledo-Aral JJ, De Bari C, McCaskie AW, Robey PG, Méndez-Ferrer S. A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell. 2022 Apr 7;29(4):528-544.e9. doi: 10.1016/j.stem.2022.02.008
  54. Сourties A, Belle M, Senay S, Cambon-Binder A, Sautet A, Chédotal A, Berenbaum F, Sellam J. Clearing method for 3-dimensional immunofluorescence of osteoarthritic subchondral human bone reveals peripheral cholinergic nerves. Sci Rep. 2020 Jun 1;10(1):8852. doi: 10.1038/s41598-020-65873-6.
  55. Liu PS, Chen YY, Feng CK, Lin YH, Yu TC. Muscarinic acetylcholine receptors present in human osteoblast and bone tissue. Eur J Pharmacol. 2011 Jan 10;650(1):34-40. doi: 10.1016/j.ejphar.2010.09.031.
  56. Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, Murshed M, Karsenty G. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 2010;11(3):231-238. doi: 10.1016/j.cmet.2010.01.005
  57. Ma Y, Elefteriou F. Brain-derived acetylcholine maintains peak bone mass in adult female mice. J Bone Miner Res. 2020;35(8):1562–71.
  58. Lips KS, Yanko Ö, Kneffel M, Panzer I, Kauschke V, Madzharova M, et al. Small changes in bone structure of female α7 nicotinic acetylcholine receptor knockout mice. BMC Musculoskelet Disord. 2015;16:5. doi: 10.1186/s12891-015-0459-8.
  59. Tanaka H, Tanabe N, Kawato T, Nakai K, Kariya T, Matsumoto S, Zhao N, Motohashi M, Maeno M. Nicotine affects bone resorption and suppresses the expression of cathepsin K, MMP-9 and vacuolar-type H(+)-ATPase d2 and actin organization in osteoclasts. PLoS One. 2013;8(3):e59402. doi: 10.1371/journal.pone.0059402
  60. Kliemann K, Kneffel M, Bergen I, Kampschulte M, Langheinrich AC, Durselen L , et al. Quantitative analyses of bone composition in acetylcholine receptor M3R and alpha7 knockout mice. Life Sci. 2012;91: 997–1002. doi: 10.1016/j.lfs.2012.07.024.
  61. Sato T, Abe T, Chida D, Nakamoto N, Hori N, Kokabu S, Sakata Y, Tomaru Y, Iwata T, Usui M, Aiko K, Yoda T. Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts. FEBS Lett 584: 817–824, 2010.
  62. Luo X, Lauwers M, Layer PG, Wen C. Non-neuronal Role of Acetylcholinesterase in Bone Development and Degeneration. Front Cell Dev Biol. 2021 Jan 28;8:620543. doi: 10.3389/fcell.2020.620543
  63. Eimar H, Alebrahim S, Manickam G, Al-Subaie A, Abu-Nada L, Murshed M, Tamimi F. Donepezil regulates energy metabolism and favors bone mass accrual. Bone. 2016 Mar; 84:131-138. doi: 10.1016/j.bone.2015.12.009
  64. Al-Hamed FS, Maria OM, Phan J, Al Subaie A, Gao Q, Mansour A, et al. Postoperative administration of the acetylcholinesterase inhibitor, donepezil, interferes with bone healing and implant osseointegration in a rat model. Biomolecules. 2020;10(9):1318.
  65. Ogunwale AN, Colon-Emeric CS, Sloane R, Adler RA, Lyles KW, Lee RH. Acetylcholinesterase Inhibitors Are Associated with Reduced Fracture Risk among Older Veterans with Dementia. J Bone Miner Res. 2020 Mar;35(3):440-445. doi: 10.1002/jbmr.3916
  66. Eimar H, Perez Lara A, Tamimi I, Márquez Sánchez P, Gormaz Talavera I, Rojas Tomba F, García de la Oliva T, Tamimi F. Acetylcholinesterase inhibitors and healing of hip fracture in Alzheimer's disease patients: a retrospective cohort study. J Musculoskelet Neuronal Interact. 2013 Dec;13(4):454-63.
  67. Hu B, Lv X, Chen H, Xue P, Gao B, Wang X, Zhen G, Crane JL, Pan D, Liu S, Ni S, Wu P, Su W, Liu X, Ling Z, Yang M, Deng R, Li Y, Wang L, Zhang Y, Wan M, Shao Z, Chen H, Yuan W, Cao X. Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J Clin Invest. 2020 Jul 1;130(7):3483-3498. doi: 10.1172/JCI131554.
  68. Ma Z, Wan Q, Qin W, Qin W, Yan J, Zhu Y, Wang Y, Ma Y, Wan M, Han X, Zhao H, Hou Y, Tay FR, Niu L, Jiao K. Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain. Int J Oral Sci. 2025 Jan 7;17(1):3. doi: 10.1038/s41368-024-00336-6.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.