骨的神经支配。植物性神经支配。第二部分(文献综述)

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

外周神经参与骨的发育、修复和重塑。交感神经系统构成中枢神经系统与骨之间的主要纽带之一,这一点已通过多项解剖学、药理学和遗传学研究得到证实,尤其涉及骨细胞中经由β-肾上腺素能受体的信号传递。本文分析了有关自主神经系统在骨组织稳态调控中作用的文献。数据检索于PubMed、 Google Scholar、Cochrane Library、Crossref、eLibrary等数据库,涵盖英文和俄文资料。体外和体内实验数据显示,肾上腺素能神经结构可通过同时增强骨分解和抑制骨形成而导致骨量丢失。胆碱能神经结构的激活则能抑制骨吸收,从而增加骨量。自主神经系统对骨重塑的影响及其主要机制多来自于啮齿类实验动物模型的研究,但这些结果在人类临床病理生理学中的意义至今仍存在争议。然而,无论其未来的有效性和实际应用如何,这些数据仍构成进一步研究的有前景基础。

全文:

受限制的访问

作者简介

Alina M. Khodorovskaya

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

编辑信件的主要联系方式.
Email: alinamyh@gmail.com
ORCID iD: 0000-0002-2772-6747
SPIN 代码: 3348-8038

MD

俄罗斯联邦, Saint Petersburg

Olga E. Agranovich

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN 代码: 4393-3694

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Margarita V. Savina

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
SPIN 代码: 5710-4790

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Konstantin A. Afonichev

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: afonichev@list.ru
ORCID iD: 0000-0002-6460-2567
SPIN 代码: 5965-6506

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Yuriy E. Garkavenko

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov

Email: yurijgarkavenko@mail.ru
ORCID iD: 0000-0001-9661-8718
SPIN 代码: 7546-3080

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Evgenii V. Melchenko

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN 代码: 1552-8550

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Anna D. Dreval

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: anndreval@yandex.ru
ORCID iD: 0009-0007-3985-634X
SPIN 代码: 4175-6620
俄罗斯联邦, Saint Petersburg

Daniil B. Vcherashniy

Ioffe Physical Technical Institute

Email: dan-v@yandex.ru
ORCID iD: 0000-0003-1658-789X
SPIN 代码: 6139-7842

Cand. Sci. (Physics and Mathematics)

俄罗斯联邦, Saint Petersburg

参考

  1. Lerner UH. The role of skeletal nerve fibers in bone metabolism. Endocrinologist. 2000;10(6):377–382. doi: 10.1097/00019616-200010060-00003
  2. Brazill JM, Beeve AT, Craft CS, et al. Nerves in bone: evolving concepts in pain and anabolism. J Bone Miner Res. 2019;34(8):1393–1406. doi: 10.1002/jbmr.3822
  3. Mach DB, Rogers SD, Sabino MC, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–166. doi: 10.1016/s0306-4522(02)00165-3 EDN: AYBUPT
  4. Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res. 1991;264(3):469–480. doi: 10.1007/BF00319037 EDN: DFKHKQ
  5. Khodorovskaya AM, Agranovich OE, Savina MV, et al. Innervation of bones. Sensory innervation. Part I: a literature review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2024;12(4):511–522. doi: 10.17816/PTORS642092 EDN: ETQCEI
  6. Roche F, Pichot V, Mouhli-Gasmi L, et al. Anatomy and physiology of the autonomic nervous system: Implication on the choice of diagnostic/monitoring tools in 2023. Rev Neurol (Paris). 2024;180(1-2):42–52. doi: 10.1016/j.neurol.2023.12.003 EDN: NEZNHL
  7. Johnson BK. Physiology of the autonomic nervous system. In: Basic Sciences in Anesthesia. Cham: Springer; 2025:377–386. doi: 10.1007/978-3-031-60203-0_19
  8. Chhatar S, Lal G. Role of adrenergic receptor signalling in neuroimmune communication. Curr Res Immunol. 2021;2:202–217. doi: 10.1016/j.crimmu.2021.11.001 EDN: ZONIPY
  9. Tabarowski Z, Gibson-Berry K, Felten SY. Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochem. 1996;98(4):453–457. doi: 10.1016/S0065-1281(96)80013-4
  10. Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–520. doi: 10.1038/nature03398
  11. Xia R, Peng H, Zhu X, et al. Autonomic nervous system in bone remodeling: from mechanisms to novel therapies in orthopedic diseases. Orthop Surg. 2025;17(6):1561–1576. doi: 10.1111/os.70010 EDN: UMAIKB
  12. Tomlinson RE, Christiansen BA, Giannone AA, et al. The role of nerves in skeletal development, adaptation, and aging. Front Endocrinol (Lausanne). 2020;11:646. doi: 10.3389/fendo.2020.00646 EDN: GINKJS
  13. Rösch G, Zaucke F, Jenei-Lanzl Z. Autonomic nervous regulation of cellular processes during subchondral bone remodeling in osteoarthritis. Am J Physiol Cell Physiol. 2023;325(2):365–384. doi: 10.1152/ajpcell.00039.2023 EDN: GNJKWR
  14. Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–317. doi: 10.1016/s0092-8674(02)01049-8
  15. Sandhu HS, Herskovits MS, Singh IJ. Effect of surgical sympathectomy on bone remodeling at rat incisor and molar root sockets. Anat Rec. 1987;219(1):32–38. doi: 10.1002/ar.1092190107
  16. Schwartzman RJ. New treatments for reflex sympathetic dystrophy. N Engl J Med. 2000;343(9):654–656. doi: 10.1056/NEJM200008313430911
  17. Mlakar V, Jurkovic Mlakar S, Zupan J, et al. ADRA2A is involved in neuro-endocrine regulation of bone resorption. J Cell Mol Med. 2015;19(7):1520–1529. doi: 10.1111/jcmm.12505 EDN: UTMYGN
  18. Fonseca TL, Jorgetti V, Costa CC, et al. Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res. 2011;26(3):591–603. doi: 10.1002/jbmr.243
  19. Kondo H, Nifuji A, Takeda S, et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem. 2005;280(34):30192–30200. doi: 10.1074/jbc.M504179200
  20. Karsenty G, Khosla S. The crosstalk between bone remodeling and energy metabolism: a translational perspective. Cell Metab. 2022;34(6):805–817. doi: 10.1016/j.cmet.2022.04.010 EDN: BVHCQR
  21. Yirmiya R, Goshen I, Bajayo A, et al. Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A. 2006;103(45):16876–16881. doi: 10.1073/pnas.0604234103
  22. Bonnet N, Benhamou CL, Beaupied H, et al. Doping dose of salbutamol and exercise: deleterious effect on cancellous and cortical bones in adult rats. J Appl Physiol (1985). 2007;102(4):1502–1509. doi: 10.1152/japplphysiol.00815.2006
  23. Kajimura D, Hinoi E, Ferron M, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med. 2011;208(4):841–851. doi: 10.1084/jem.20102608
  24. de Vries F, Souverein PC, Cooper C, et al. Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and the Netherlands. Calcif Tissue Int. 2007;80(2):69–75. doi: 10.1007/s00223-006-0213-1 EDN: TVUADO
  25. Meisinger C, Heier M, Lang O, Doring A. Beta-blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Augsburg cohort study. Osteoporos Int. 2007;18(9):1189–1195. doi: 10.1007/s00198-007-0354-8 EDN: FBRLEV
  26. Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA. 2004;292(11):1326–1332. doi: 10.1001/jama.292.11.1326
  27. Toulis KA, Hemming K, Stergianos S, et al. β-adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int. 2014;25(1):121–129. doi: 10.1007/s00198-013-2498-z EDN: ESFRNB
  28. Kondo H, Togari A. Continuous treatment with a low-dose β-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int. 2011;88(1):23-32. doi: 10.1007/s00223-010-9421-9
  29. Levasseur R, Dargent-Molina P, Sabatier JP, et al. Beta-blocker use, bone mineral density, and fracture risk in older women: results from the Epidemiologie de l’Osteoporose prospective study. J Am Geriatr Soc. 2005;53(3):550–552. doi: 10.1111/j.1532-5415.2005.53178_7.x
  30. Veldhuis-Vlug AG, Oei L, Souverein PC, et al. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. Osteoporos Int. 2015;26(7):2019–2027. doi: 10.1007/s00198-015-3087-0 EDN: UTMYIB
  31. Veldhuis-Vlug AG, Tanck MW, Limonard EJ, et al. The effects of beta-2 adrenergic agonist and antagonist on human bone metabolism: a randomized controlled trial. Bone. 2015;71:196–200. doi: 10.1016/j.bone.2014.10.024
  32. Reid IR, Lucas J, Wattie D, et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab. 2005;90(9):5212–5216. doi: 10.1210/jc.2005-0573
  33. Choi HJ, Park C, Lee YK, et al. Risk of fractures in subjects with antihypertensive medications: a nationwide claim study. Int J Cardiol. 2015;184:62–67. doi: 10.1016/j.ijcard.2015.01.072
  34. Rejnmark L, Vestergaard P, Kassem M, et al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int. 2004;75(5):365–372. doi: 10.1007/s00223-004-0222-x
  35. Gonnelli S, Caffarelli C, Maggi S, et al. Effect of inhaled glucocorticoids and beta(2) agonists on vertebral fracture risk in COPD patients: the EOLO study. Calcif Tissue Int. 2010;87(2):137–143. doi: 10.1007/s00223-010-9392-x EDN: FLUCCT
  36. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk in patients with chronic lung diseases treated with bronchodilator drugs and inhaled and oral corticosteroids. Chest. 2007;132(5):1599–1607. doi: 10.1378/chest.07-1092
  37. Veldhuis-Vlug AG, El Mahdiui M, Endert E, et al. Bone resorption is increased in pheochromocytoma patients and normalizes following adrenalectomy. J Clin Endocrinol Metab. 2012;97(11):E2093–E2097. doi: 10.1210/jc.2012-2823
  38. Kim BJ, Lee SH, Koh JM. Effects of sympathetic activity on human skeletal homeostasis: clinical evidence from pheochromocytoma. Clin Rev Bone Miner Metab. 2019;17(1):40–47. doi: 10.1007/s12018-019-9257-4 EDN: UEHTPC
  39. Elefteriou F. Impact of the autonomic nervous system on the skeleton. Physiol Rev. 2018;98(3):1083–1112. doi: 10.1152/physrev.00014.2017
  40. Khosla S, Drake MT, Volkman TL, et al. Sympathetic beta1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest. 2018;128(11):4832–4842. doi: 10.1172/jci122151
  41. Sseur R, Sabatier JP, Potrel-Burgot C, et al. Sympathetic nervous system as transmitter of mechanical loading in bone. Joint Bone Spine. 2003;70(6):515–519. doi: 10.1016/j.jbspin.2003.07.006
  42. Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol. 2007;34(4):377–384. doi: 10.1111/j.1440-1681.2007.04590.x
  43. Farr JN, Charkoudian N, Barnes JN, et al. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab. 2012;97(11):4219–4227. doi: 10.1210/jc.2012-2381
  44. Liang TZ, Jin ZY, Lin YJ, et al. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res. 2025;12(1):13. doi: 10.1186/s40779-025-00600-8 EDN: DSKIQT
  45. En-Nosse M, Hartmann S, Trinkaus K, et al. Expression of non-neuronal cholinergic system in osteoblast-like cells and its involvement in osteogenesis. Cell Tissue Res. 2009;338(2):203–215. doi: 10.1007/s00441-009-0871-1 EDN: BGWRIM
  46. Kauschke V, Lips KS, Heiss C, Schnettler R. Expression of muscarinic acetylcholine receptors M3 and M5 in osteoporosis. Med Sci Monit. 2014;20:869–874. doi: 10.12659/MSM.890217
  47. Weng W, Li H, Zhu S. An overlooked bone metabolic disorder: cigarette smoking-induced osteoporosis. Genes (Basel). 2022;13(5):806. doi: 10.3390/genes13050806 EDN: KAEMVD
  48. Wu LZ, Duan DM, Liu YF, et al. Nicotine favors osteoclastogenesis in human periodontal ligament cells co-cultured with CD4(+) T cells by upregulating IL-1β. Int J Mol Med. 2013;31(4):938–942. doi: 10.3892/ijmm.2013.1259
  49. Dénes A, Boldogkoi Z, Uhereczky G, et al. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience. 2005;134(3):947–963. doi: 10.1016/j.neuroscience.2005.03.060
  50. Liu Q, Wu Y, Wang H, et al. Viral tools for neural circuit tracing. Neurosci Bull. 2022;38(12):1508–1518. doi: 10.1007/s12264-022-00949-z EDN: XBANGJ
  51. Asmus SE, Parsons S, Landis SC. Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J Neurosci. 2000;20(4):1495–1504. doi: 10.1523/JNEUROSCI.20-04-01495.2000
  52. Bajayo A, Bar A, Denes A, et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci U S A. 2012;109(38):15455–15460. doi: 10.1073/pnas.1206061109
  53. Gadomski S, Fielding C, García-García A, et al. A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell. 2022;29(4):528–544.e9. doi: 10.1016/j.stem.2022.02.008 EDN: DIOYLC
  54. Courties A, Belle M, Senay S, et al. Clearing method for 3-dimensional immunofluorescence of osteoarthritic subchondral human bone reveals peripheral cholinergic nerves. Sci Rep. 2020;10(1):8852. doi: 10.1038/s41598-020-65873-6 EDN: DNAVRN
  55. Liu PS, Chen YY, Feng CK, et al. Muscarinic acetylcholine receptors present in human osteoblast and bone tissue. Eur J Pharmacol. 2011;650(1):34–40. doi: 10.1016/j.ejphar.2010.09.031
  56. Shi Y, Oury F, Yadav VK, et al. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 2010;11(3):231–238. doi: 10.1016/j.cmet.2010.01.005 EDN: NYWYZV
  57. Ma Y, Elefteriou F. Brain-derived acetylcholine maintains peak bone mass in adult female mice. J Bone Miner Res. 2020;35(8):1562–1571. doi: 10.1002/jbmr.4024 EDN: CLCIFU
  58. Lips KS, Yanko Ö, Kneffel M, et al. Small changes in bone structure of female α7 nicotinic acetylcholine receptor knockout mice. BMC Musculoskelet Disord. 2015;16(1):5. doi: 10.1186/s12891-015-0459-8 EDN: UTLDYR
  59. Tanaka H, Tanabe N, Kawato T, et al. Nicotine affects bone resorption and suppresses the expression of cathepsin K, MMP-9 and vacuolar-type H(+)-ATPase d2 and actin organization in osteoclasts. PLoS One. 2013;8(3):e59402. doi: 10.1371/journal.pone.0059402
  60. Kliemann K, Kneffel M, Bergen I, et al. Quantitative analyses of bone composition in acetylcholine receptor M3R and alpha7 knockout mice. Life Sci. 2012;91(21-22):997–1002. doi: 10.1016/j.lfs.2012.07.024
  61. Hu B, Lv X, Chen H, et al. Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J Clin Invest. 2020;130(7):3483–3498. doi: 10.1172/JCI131554 EDN: ANYQBE
  62. Ma Zh, Wan Q, Qin W, et al. Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain. Int J Oral Sci. 2025;17(1):3. doi: 10.1038/s41368-024-00336-6 EDN: DLDIHX

补充文件

附件文件
动作
1. JATS XML

版权所有 © Эко-Вектор, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.