Innervation of Bones. Autonomic Innervation. Part Two (A Review)
- Authors: Khodorovskaya A.M.1, Agranovich O.E.1, Savina M.V.1, Afonichev K.A.1, Garkavenko Y.E.1,2, Melchenko E.V.1, Dreval A.D.3, Vcherashniy D.B.4
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- North-Western State Medical University named after I.I. Mechnikov
- Academician I.P. Pavlov First St. Petersburg State Medical University
- Ioffe Physical Technical Institute
- Issue: Vol 13, No 3 (2025)
- Pages: 339-347
- Section: Scientific reviews
- Submitted: 01.08.2025
- Accepted: 01.09.2025
- Published: 26.09.2025
- URL: https://journals.eco-vector.com/turner/article/view/688567
- DOI: https://doi.org/10.17816/PTORS688567
- EDN: https://elibrary.ru/QWOGEN
- ID: 688567
Cite item
Abstract
The peripheral nerves are involved in bone development, repair, and remodeling. The sympathetic nervous system is a key link between the central nervous system and skeleton, as determined by various anatomical, pharmacological, and genetic studies of β-adrenergic receptor signaling in bone cells. This study reviewed publications on the contribution of the autonomic nervous system to bone tissue homeostasis. A search for English and Russian scientific publications was performed in PubMed, Google Scholar, Cochrane Library, Crossref, and eLibrary. In vitro and in vivo experiments showed that adrenergic neural structures promote bone loss by simultaneously enhancing bone catabolism and reducing bone anabolism. In contrast, cholinergic neural structure activation suppresses bone resorption, leading to increased bone mass. The effects of the autonomic nervous system on bone remodeling and their underlying mechanisms have been studied primarily in rodent models. However, the clinical relevance of the findings for human pathophysiology remains debatable. Regardless of their future validity and practical applicability, these data provide a promising basis for further studies.
Full Text
About the authors
Alina M. Khodorovskaya
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: alinamyh@gmail.com
ORCID iD: 0000-0002-2772-6747
SPIN-code: 3348-8038
MD
Russian Federation, Saint PetersburgOlga E. Agranovich
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN-code: 4393-3694
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgMargarita V. Savina
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
SPIN-code: 5710-4790
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgKonstantin A. Afonichev
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: afonichev@list.ru
ORCID iD: 0000-0002-6460-2567
SPIN-code: 5965-6506
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgYuriy E. Garkavenko
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov
Email: yurijgarkavenko@mail.ru
ORCID iD: 0000-0001-9661-8718
SPIN-code: 7546-3080
MD, Dr. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgEvgenii V. Melchenko
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN-code: 1552-8550
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgAnna D. Dreval
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: anndreval@yandex.ru
ORCID iD: 0009-0007-3985-634X
SPIN-code: 4175-6620
Russian Federation, Saint Petersburg
Daniil B. Vcherashniy
Ioffe Physical Technical Institute
Email: dan-v@yandex.ru
ORCID iD: 0000-0003-1658-789X
SPIN-code: 6139-7842
Cand. Sci. (Physics and Mathematics)
Russian Federation, Saint PetersburgReferences
- Lerner UH. The role of skeletal nerve fibers in bone metabolism. Endocrinologist. 2000;10(6):377–382. doi: 10.1097/00019616-200010060-00003
- Brazill JM, Beeve AT, Craft CS, et al. Nerves in bone: evolving concepts in pain and anabolism. J Bone Miner Res. 2019;34(8):1393–1406. doi: 10.1002/jbmr.3822
- Mach DB, Rogers SD, Sabino MC, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–166. doi: 10.1016/s0306-4522(02)00165-3 EDN: AYBUPT
- Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res. 1991;264(3):469–480. doi: 10.1007/BF00319037 EDN: DFKHKQ
- Khodorovskaya AM, Agranovich OE, Savina MV, et al. Innervation of bones. Sensory innervation. Part I: a literature review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2024;12(4):511–522. doi: 10.17816/PTORS642092 EDN: ETQCEI
- Roche F, Pichot V, Mouhli-Gasmi L, et al. Anatomy and physiology of the autonomic nervous system: Implication on the choice of diagnostic/monitoring tools in 2023. Rev Neurol (Paris). 2024;180(1-2):42–52. doi: 10.1016/j.neurol.2023.12.003 EDN: NEZNHL
- Johnson BK. Physiology of the autonomic nervous system. In: Basic Sciences in Anesthesia. Cham: Springer; 2025:377–386. doi: 10.1007/978-3-031-60203-0_19
- Chhatar S, Lal G. Role of adrenergic receptor signalling in neuroimmune communication. Curr Res Immunol. 2021;2:202–217. doi: 10.1016/j.crimmu.2021.11.001 EDN: ZONIPY
- Tabarowski Z, Gibson-Berry K, Felten SY. Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochem. 1996;98(4):453–457. doi: 10.1016/S0065-1281(96)80013-4
- Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–520. doi: 10.1038/nature03398
- Xia R, Peng H, Zhu X, et al. Autonomic nervous system in bone remodeling: from mechanisms to novel therapies in orthopedic diseases. Orthop Surg. 2025;17(6):1561–1576. doi: 10.1111/os.70010 EDN: UMAIKB
- Tomlinson RE, Christiansen BA, Giannone AA, et al. The role of nerves in skeletal development, adaptation, and aging. Front Endocrinol (Lausanne). 2020;11:646. doi: 10.3389/fendo.2020.00646 EDN: GINKJS
- Rösch G, Zaucke F, Jenei-Lanzl Z. Autonomic nervous regulation of cellular processes during subchondral bone remodeling in osteoarthritis. Am J Physiol Cell Physiol. 2023;325(2):365–384. doi: 10.1152/ajpcell.00039.2023 EDN: GNJKWR
- Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–317. doi: 10.1016/s0092-8674(02)01049-8
- Sandhu HS, Herskovits MS, Singh IJ. Effect of surgical sympathectomy on bone remodeling at rat incisor and molar root sockets. Anat Rec. 1987;219(1):32–38. doi: 10.1002/ar.1092190107
- Schwartzman RJ. New treatments for reflex sympathetic dystrophy. N Engl J Med. 2000;343(9):654–656. doi: 10.1056/NEJM200008313430911
- Mlakar V, Jurkovic Mlakar S, Zupan J, et al. ADRA2A is involved in neuro-endocrine regulation of bone resorption. J Cell Mol Med. 2015;19(7):1520–1529. doi: 10.1111/jcmm.12505 EDN: UTMYGN
- Fonseca TL, Jorgetti V, Costa CC, et al. Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res. 2011;26(3):591–603. doi: 10.1002/jbmr.243
- Kondo H, Nifuji A, Takeda S, et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem. 2005;280(34):30192–30200. doi: 10.1074/jbc.M504179200
- Karsenty G, Khosla S. The crosstalk between bone remodeling and energy metabolism: a translational perspective. Cell Metab. 2022;34(6):805–817. doi: 10.1016/j.cmet.2022.04.010 EDN: BVHCQR
- Yirmiya R, Goshen I, Bajayo A, et al. Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A. 2006;103(45):16876–16881. doi: 10.1073/pnas.0604234103
- Bonnet N, Benhamou CL, Beaupied H, et al. Doping dose of salbutamol and exercise: deleterious effect on cancellous and cortical bones in adult rats. J Appl Physiol (1985). 2007;102(4):1502–1509. doi: 10.1152/japplphysiol.00815.2006
- Kajimura D, Hinoi E, Ferron M, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med. 2011;208(4):841–851. doi: 10.1084/jem.20102608
- de Vries F, Souverein PC, Cooper C, et al. Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and the Netherlands. Calcif Tissue Int. 2007;80(2):69–75. doi: 10.1007/s00223-006-0213-1 EDN: TVUADO
- Meisinger C, Heier M, Lang O, Doring A. Beta-blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Augsburg cohort study. Osteoporos Int. 2007;18(9):1189–1195. doi: 10.1007/s00198-007-0354-8 EDN: FBRLEV
- Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA. 2004;292(11):1326–1332. doi: 10.1001/jama.292.11.1326
- Toulis KA, Hemming K, Stergianos S, et al. β-adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int. 2014;25(1):121–129. doi: 10.1007/s00198-013-2498-z EDN: ESFRNB
- Kondo H, Togari A. Continuous treatment with a low-dose β-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int. 2011;88(1):23-32. doi: 10.1007/s00223-010-9421-9
- Levasseur R, Dargent-Molina P, Sabatier JP, et al. Beta-blocker use, bone mineral density, and fracture risk in older women: results from the Epidemiologie de l’Osteoporose prospective study. J Am Geriatr Soc. 2005;53(3):550–552. doi: 10.1111/j.1532-5415.2005.53178_7.x
- Veldhuis-Vlug AG, Oei L, Souverein PC, et al. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. Osteoporos Int. 2015;26(7):2019–2027. doi: 10.1007/s00198-015-3087-0 EDN: UTMYIB
- Veldhuis-Vlug AG, Tanck MW, Limonard EJ, et al. The effects of beta-2 adrenergic agonist and antagonist on human bone metabolism: a randomized controlled trial. Bone. 2015;71:196–200. doi: 10.1016/j.bone.2014.10.024
- Reid IR, Lucas J, Wattie D, et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab. 2005;90(9):5212–5216. doi: 10.1210/jc.2005-0573
- Choi HJ, Park C, Lee YK, et al. Risk of fractures in subjects with antihypertensive medications: a nationwide claim study. Int J Cardiol. 2015;184:62–67. doi: 10.1016/j.ijcard.2015.01.072
- Rejnmark L, Vestergaard P, Kassem M, et al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int. 2004;75(5):365–372. doi: 10.1007/s00223-004-0222-x
- Gonnelli S, Caffarelli C, Maggi S, et al. Effect of inhaled glucocorticoids and beta(2) agonists on vertebral fracture risk in COPD patients: the EOLO study. Calcif Tissue Int. 2010;87(2):137–143. doi: 10.1007/s00223-010-9392-x EDN: FLUCCT
- Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk in patients with chronic lung diseases treated with bronchodilator drugs and inhaled and oral corticosteroids. Chest. 2007;132(5):1599–1607. doi: 10.1378/chest.07-1092
- Veldhuis-Vlug AG, El Mahdiui M, Endert E, et al. Bone resorption is increased in pheochromocytoma patients and normalizes following adrenalectomy. J Clin Endocrinol Metab. 2012;97(11):E2093–E2097. doi: 10.1210/jc.2012-2823
- Kim BJ, Lee SH, Koh JM. Effects of sympathetic activity on human skeletal homeostasis: clinical evidence from pheochromocytoma. Clin Rev Bone Miner Metab. 2019;17(1):40–47. doi: 10.1007/s12018-019-9257-4 EDN: UEHTPC
- Elefteriou F. Impact of the autonomic nervous system on the skeleton. Physiol Rev. 2018;98(3):1083–1112. doi: 10.1152/physrev.00014.2017
- Khosla S, Drake MT, Volkman TL, et al. Sympathetic beta1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest. 2018;128(11):4832–4842. doi: 10.1172/jci122151
- Sseur R, Sabatier JP, Potrel-Burgot C, et al. Sympathetic nervous system as transmitter of mechanical loading in bone. Joint Bone Spine. 2003;70(6):515–519. doi: 10.1016/j.jbspin.2003.07.006
- Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol. 2007;34(4):377–384. doi: 10.1111/j.1440-1681.2007.04590.x
- Farr JN, Charkoudian N, Barnes JN, et al. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab. 2012;97(11):4219–4227. doi: 10.1210/jc.2012-2381
- Liang TZ, Jin ZY, Lin YJ, et al. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res. 2025;12(1):13. doi: 10.1186/s40779-025-00600-8 EDN: DSKIQT
- En-Nosse M, Hartmann S, Trinkaus K, et al. Expression of non-neuronal cholinergic system in osteoblast-like cells and its involvement in osteogenesis. Cell Tissue Res. 2009;338(2):203–215. doi: 10.1007/s00441-009-0871-1 EDN: BGWRIM
- Kauschke V, Lips KS, Heiss C, Schnettler R. Expression of muscarinic acetylcholine receptors M3 and M5 in osteoporosis. Med Sci Monit. 2014;20:869–874. doi: 10.12659/MSM.890217
- Weng W, Li H, Zhu S. An overlooked bone metabolic disorder: cigarette smoking-induced osteoporosis. Genes (Basel). 2022;13(5):806. doi: 10.3390/genes13050806 EDN: KAEMVD
- Wu LZ, Duan DM, Liu YF, et al. Nicotine favors osteoclastogenesis in human periodontal ligament cells co-cultured with CD4(+) T cells by upregulating IL-1β. Int J Mol Med. 2013;31(4):938–942. doi: 10.3892/ijmm.2013.1259
- Dénes A, Boldogkoi Z, Uhereczky G, et al. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience. 2005;134(3):947–963. doi: 10.1016/j.neuroscience.2005.03.060
- Liu Q, Wu Y, Wang H, et al. Viral tools for neural circuit tracing. Neurosci Bull. 2022;38(12):1508–1518. doi: 10.1007/s12264-022-00949-z EDN: XBANGJ
- Asmus SE, Parsons S, Landis SC. Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J Neurosci. 2000;20(4):1495–1504. doi: 10.1523/JNEUROSCI.20-04-01495.2000
- Bajayo A, Bar A, Denes A, et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci U S A. 2012;109(38):15455–15460. doi: 10.1073/pnas.1206061109
- Gadomski S, Fielding C, García-García A, et al. A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell. 2022;29(4):528–544.e9. doi: 10.1016/j.stem.2022.02.008 EDN: DIOYLC
- Courties A, Belle M, Senay S, et al. Clearing method for 3-dimensional immunofluorescence of osteoarthritic subchondral human bone reveals peripheral cholinergic nerves. Sci Rep. 2020;10(1):8852. doi: 10.1038/s41598-020-65873-6 EDN: DNAVRN
- Liu PS, Chen YY, Feng CK, et al. Muscarinic acetylcholine receptors present in human osteoblast and bone tissue. Eur J Pharmacol. 2011;650(1):34–40. doi: 10.1016/j.ejphar.2010.09.031
- Shi Y, Oury F, Yadav VK, et al. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 2010;11(3):231–238. doi: 10.1016/j.cmet.2010.01.005 EDN: NYWYZV
- Ma Y, Elefteriou F. Brain-derived acetylcholine maintains peak bone mass in adult female mice. J Bone Miner Res. 2020;35(8):1562–1571. doi: 10.1002/jbmr.4024 EDN: CLCIFU
- Lips KS, Yanko Ö, Kneffel M, et al. Small changes in bone structure of female α7 nicotinic acetylcholine receptor knockout mice. BMC Musculoskelet Disord. 2015;16(1):5. doi: 10.1186/s12891-015-0459-8 EDN: UTLDYR
- Tanaka H, Tanabe N, Kawato T, et al. Nicotine affects bone resorption and suppresses the expression of cathepsin K, MMP-9 and vacuolar-type H(+)-ATPase d2 and actin organization in osteoclasts. PLoS One. 2013;8(3):e59402. doi: 10.1371/journal.pone.0059402
- Kliemann K, Kneffel M, Bergen I, et al. Quantitative analyses of bone composition in acetylcholine receptor M3R and alpha7 knockout mice. Life Sci. 2012;91(21-22):997–1002. doi: 10.1016/j.lfs.2012.07.024
- Hu B, Lv X, Chen H, et al. Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J Clin Invest. 2020;130(7):3483–3498. doi: 10.1172/JCI131554 EDN: ANYQBE
- Ma Zh, Wan Q, Qin W, et al. Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain. Int J Oral Sci. 2025;17(1):3. doi: 10.1038/s41368-024-00336-6 EDN: DLDIHX
Supplementary files



