9–12岁软骨发育不全患儿交叉延长股骨与对侧小腿时股骨牵张再生骨修复性骨生成的超声学标准
- 作者: Menshchikova T.I.1, Aranovich A.M.1
-
隶属关系:
- National Ilizarov Medical Research Center for Traumatology and Orthopedics
- 期: 卷 13, 编号 3 (2025)
- 页面: 266-274
- 栏目: Clinical studies
- ##submission.dateSubmitted##: 18.06.2025
- ##submission.dateAccepted##: 05.08.2025
- ##submission.datePublished##: 26.09.2025
- URL: https://journals.eco-vector.com/turner/article/view/683974
- DOI: https://doi.org/10.17816/PTORS683974
- EDN: https://elibrary.ru/AHBXTM
- ID: 683974
如何引用文章
详细
论证。对修复性骨生成的动态评估具有重要意义,因为股骨再生骨的成熟度决定了对侧小腿延长的手术时机,以及患者的整体住院周期。
目的:探讨软骨发育不全患者股骨牵张再生骨修复性骨生成的超声学标准,以作为开展对侧小腿手术的指征。
方法。纳入9–12岁软骨发育不全患者(n=37),其中在6–7岁时曾接受第一阶段双侧小腿延长治疗。在第二阶段治疗中,先进行股骨延长,随后进行对侧小腿延长。股骨延长采用双皮质截骨术。牵张期为63±3天,延长幅度为6.5±0.5 cm。对骨再生组织进行超声扫描(AVISUS,Hitachi,日本),在牵张开始后的第7、20、30、60天以及固定期内每月各进行一次。对结果的数学处理采用适用于小样本的变异统计学方法,显著性水平设定为p≤0.05,差异的显著性采用Wilcoxon W检验进行判断。
结果。牵张过程中,在骨再生组织的中间带观察到线性高回声片段的数量和大小逐渐增加。为维持牵张,在中央带保留了“生长带”,其表现为低矿化层,声学密度为65–85个单位。至牵张末期,超声显示高回声区缩小,结缔组织间隙减少,中间带逐渐被填充。在固定早期,由于矿化过程活跃,片段及再生骨的声学密度分别达到 198±9.0 和 158±4.5 个单位(与牵张初期相比,p≤0.05),提示患肢可承受适度负荷,并具备开展对侧小腿手术的条件。
结论。9–12岁软骨发育不全患儿在进行股骨牵张延长时,股骨再生组织修复性骨生成的超声学标准,可作为开展对侧小腿延长手术的指征,包括:在整个牵张期间均可见再生组织形成典型的分区结构;在所有可视化的再生组织带内均未发现局灶性病灶;至牵张期末,再生组织的声学密度较治疗初始水平提高约50%;在固定期开始时,再生组织的高回声带宽度降低至所达延长量的45–48%。
全文:
作者简介
Tatyana I. Menshchikova
National Ilizarov Medical Research Center for Traumatology and Orthopedics
编辑信件的主要联系方式.
Email: tat-mench@mail.ru
ORCID iD: 0000-0002-5244-7539
SPIN 代码: 2820-9120
Dr. Sci. (Biology)
俄罗斯联邦, KurganAnna M. Aranovich
National Ilizarov Medical Research Center for Traumatology and Orthopedics
Email: aranovich_anna@mail.ru
ORCID iD: 0000-0002-7806-7083
SPIN 代码: 7277-6339
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Kurgan参考
- Pauli RM. Achondroplasia: a comprehensive clinical review. Orphanet J Rare Dis. 2019;14(1):1. doi: 10.1186/s13023-018-0972-6 EDN: UDCAAA
- Harris R, Patton JT. Achondroplasia and thanatophoric dwarfism in the newborn. Clin Genet. 1971;2(2):61–72. doi: 10.1111/j.1399-0004.1971.tb00257.x
- Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007;370(9582):162–172. doi: 10.1016/S0140-6736(07)61090-3
- Wrobel W, Pach E, Ben-Skowronek I. Advantages and disadvantages of different treatment methods in achondroplasia: a review. Int J Mol Sci. 2021;22(11):5573. doi: 10.3390/ijms22115573 EDN: JCDLDK
- Murton MC, Drane ELA, Goff-Leggett DM, et al. Burden and treatment of achondroplasia: a systematic literature review. Adv Ther. 2023;40(9):3639–3680. doi: 10.1007/s12325-023-02549-3 EDN: DRPJTM
- Foreman PK, Van Kessel F, Van Hoorn R, et al. Birth prevalence of achondroplasia: a systematic literature review and meta-analysis. Am J Med Genet A. 2020;182(10):2297–2316. doi: 10.1002/ajmg.a.61787 EDN: PVUYPN
- Legare JM. Achondroplasia. In: Adam MP, Feldman J, Mirzaa GM, et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025.
- Tofts L, Ireland P, Tate T, et al. Consensus guidelines for the use of vosoritide in children with achondroplasia in Australia. Children. 2024;11(7):789. doi: 10.3390/children11070789 EDN: HABXJM
- Biosse Duplan M, Dambroise E, Estibals V, et al. An Fgfr3-activating mutation in immature murine osteoblasts affects the appendicular and craniofacial skeleton. Dis Model Mech. 2021;14(4):dmm048272. doi: 10.1242/dmm.048272 EDN: QAUISF
- Shirley ED, Ain MC. Achondroplasia: manifestations and treatment. J Am Acad Orthop Surg. 2009;17(4):231–241. doi: 10.5435/00124635-200904000-00004
- Matsushita M, Esaki R, Mishima K, et al. Clinical dosage of meclozine promotes longitudinal bone growth, bone volume, and trabecular bone quality in transgenic mice with achondroplasia. Sci Rep. 2017;7(1):7371. doi: 10.1038/s41598-017-07044-8 EDN: ETOWJP
- Hoover-Fong J, Scott CI, Jones MC. Health supervision for people with achondroplasia. Pediatrics. 2020;145(6):e20201010. doi: 10.1542/peds.2020-1010
- Pfeiffer KM, Brod M, Smith A, et al. Assessing physical symptoms, daily functioning, and well-being in children with achondroplasia. Am J Med Genet A. 2021;185(1):33–45. doi: 10.1002/ajmg.a.61903 EDN: JZBTGI
- Sommer R, Blömeke J, Dabs M, et al. An ICF-CY-based approach to assessing self- and observer-reported functioning in young persons with achondroplasia-development of the pilot version of the Achondroplasia Personal Life Experience Scale (APLES). Disabil Rehabil. 2017;39(24):2499–2503. doi: 10.1080/09638288.2016.1226969
- Unger S, Bonafé L, Gouze E. Current care and investigational therapies in achondroplasia. Curr Osteoporos Rep. 2017;15(2):53–60. doi: 10.1007/s11914-017-0347-2 EDN: CDHGLC
- Popkov AV. Akhondroplaziya: rukovodstvo dlya vrachei. Popkov AV, Shevtsov VI, eds. Moscow: Meditsina; 2001. 352 p. (In Russ.)
- Zheng X, Qin S, Shi L, et al. Preliminary study of Ilizarov technique in treatment of lower limb deformity caused by achondroplasia. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023;37(2):157–161. doi: 10.7507/1002-1892.202210072
- Chilbule SK, Dutt V, Madhuri V. Limb lengthening in achondroplasia. Indian J Orthop. 2016;50(4):397–405. doi: 10.4103/0019-5413.185604 EDN: DQXUGB
- Shevtsov VI, Leonchuk SS. Stimulation of distraction osteogenesis during limb lengthening: our concept. Traumatology and Orthopedics of Russia. 2021;27(1):75–85. doi: 10.21823/2311-2905-2021-27-1-75-85 EDN: ZALXJW
- Donaldson J, Aftab S, Bradish C. Achondroplasia and limb lengthening: Results in a UK cohort and review of the literature. J Orthop. 2015;12(1):31–34. doi: 10.1016/j.jor.2015.01.001 EDN: YBFUZO
- Novikov KI, Klintsov EV, Klimov OV, et al. Failed distractional bone regeneration as a complication of distraction osteosynthesis: risk factors, preventive diagnosis, treatment. Orthopaedic Genius. 2024;30(1):134–141. doi: 10.18019/1028-4427-2024-30-1-134-141 EDN: EZRBEC
- Aranovich AM, Stogov MV, Tushina NV, et al. C-reactive protein as a prognostic marker of distraction osteogenesis disorders. Preliminary results. Orthopaedic Genius. 2020;26(3):382–384. doi: 10.18019/1028-4427-2020-26-3-382-384 EDN: COTQQA
- Aranovich AM, Stogov MV, Kireeva EF, et al. Prediction and control of the distraction osteogenesis course. Analytical review. Orthopaedic Genius. 2019;25(3):400–406. doi: 10.18019/1028-4427-2019-25-3-400-406 EDN: VZHOMN
- Bayram S, Yıldırım AM, Eralp L, et al. The relationship between limb lengthening rate and callus quality in patients with achondroplasia. Indian J Orthop. 2022;56(11):1891–1896. doi: 10.1007/s43465-022-00694-5 EDN: TIYFKQ
- Puseva ME, Lebedinskii VI, Mikhailov IN, et al. Complex characteristic of forearm distraction regenerated bone experimentally. Orthopaedic Genius. 2013;(4):84–90. EDN: RPWODD
- Maffulli N, Hughes T, Fixsen JA. Ultrasonographic monitoring of limb lengthening. J Bone Joint Surg Br. 1992;74(1):130–132. doi: 10.1302/0301-620X.74B1.1732241
- Ciminari R, Galletti S, Pelotti P, Donzelly O. Ultrasound-radiographic correlations of the various phases of bone regeneration in secondary limb lengthening: an investigation protocol. Giornale Ital Ortoped Traumatol. 1991;17(3):141–142. (In Italian.)
- Hupperts R, Pfeil J, Kaps HP. Ultrasound follow-up of bone lengthening osteotomy. Z Orthop Ihre Grenzgeb. 1990;128(1):90–95. (In German.) doi: 10.1055/s-2008-1039867
- Menshchikova TI, Aranovich AM. Tibial lengthening in achondroplasia patients aged 6–9 years as the first stage of growth correction. Orthopaedic Genius. 2021;27(3):366–371. doi: 10.18019/1028-4427-2021-27-3-366-371 EDN: RQVSDS
- Luneva SN, Menshchikova TI, Aranovich AM. Features of the reparative osteogenesis of the distraction of the tibial regenerate and osteotropic growth factors in patients with achondroplasia at the age of 9–12 years. Pediatric Traumatology Orthopaedics and Reconstructive Surgery. 2022;10(3):223–234. doi: 10.17816/PTORS108618 EDN: WHEOFF
- Aborin SA, Gorevanov EA, Popkov DA, et al. Zonal change of the optical density of regenerated bone and femur in lengthening of congenitally shortened femur using the technique of bifocal distraction osteosynthesis. Orthopaedic Genius. 2003;(1):68–71. EDN: PFTDNJ
- Novikov KI, Klimov OV, Novikova OS. The roentgenologic characteristic features of distraction regenerated bone formation for the monofocal and bifocal variant of femoral lengthening in patients with achondroplasia. Orthopaedic Genius. 2007;(4):16–20. EDN: JHKHEH
- Shevtsov VI, Bakhlykov YN. Morphological characteristics of the “growth zone” of tibial distraction regenerate in experiment. Bulletin of Tyumen State University. 2004;(3):123–127.
- Popkov AV, Popkov DA, Irianov YM, et al. Stimulation of bone tissue reparative regeneration for shaft fractures (an experimental study). International Journal of Applied and Fundamental Research. 2014;(9-1):82–88. (In Russ.)
- Irianov YM, Gorbach EN, Petrovskaya NV. Quantitative assessment of the periosteal blood supply of canine tibial diaphysis for leg lengthening using the method of distraction osteosynthesis. Morphological Newsletter. 2007;(1-2):57–60. EDN: MJCMKJ
- Larionov AA, Kochetkov YS, Desiatnichenko KS, et al. Experimental grounds for stimulation of formation and reorganization of distraction regenerated bone. Orthopaedic Genius. 2000;(1). (In Russ.)
- Shevtsov VI, Irianov YM, Irianova TY. The effect of distraction on the shape-forming processes of regenerating bone tissue. Orthopaedic Genius. 2005;(4):77–80. (In Russ.) EDN: LDGXNN
- Novikov KI, Komarova ES, Kolesnikov SV, et al. Evolution of tactical approaches to eliminating limb length discrepancy. Orthopaedic Genius. 2024;30(2):301–308. doi: 10.18019/1028-4427-2024-30-2-301-308 EDN: RPAGRV
补充文件









