Clinical aspects of the applicability of biomarkers of acute kidney injury in ischemia-reperfusion in operative urology
- Authors: Popov S.V.1,2,3, Guseinov R.G.1,2,4, Sivak K.V.1,5, Perepelitsa V.V.1,2, Bunenkov N.S.1,6,7, Lelyavina T.A.1,6
- 
							Affiliations: 
							- Clinical Hospital of St. Luke
- Saint Petersburg Medical and Social Institute
- Kirov Military Medical Academy
- Saint Petersburg State University
- Smorodintsev Research Institute of Influenza
- Almazov National Medical Research Centre
- Academician I.P. Pavlov First Saint Petersburg State Medical University
 
- Issue: Vol 14, No 2 (2024)
- Pages: 209-216
- Section: Reviews
- Submitted: 06.09.2023
- Accepted: 25.06.2024
- Published: 08.08.2024
- URL: https://journals.eco-vector.com/uroved/article/view/569117
- DOI: https://doi.org/10.17816/uroved569117
- ID: 569117
Cite item
Abstract
The development of acute kidney injury during surgical renal-preserving interventions characterizes the nature of the clinical course and prognosis for the development of chronic kidney disease. The use of standard indicators of disease progression (serum creatinine and urea nitrogen) in clinical practice can lead to unfavorable outcomes of acute kidney injury due to their low sensitivity and high specificity against the background of damage to more than 50% of the renal parenchyma). Other biomarkers of acute kidney injury (cystatin C, IL-18, KIM-1, NGAL, L-FABP, NAG and others) are superior to creatinine in sensitivity and specificity, but require additional research to identify the most optimal ones for clinical practice.
Full Text
 
												
	                        About the authors
Sergey V. Popov
Clinical Hospital of St. Luke; Saint Petersburg Medical and Social Institute; Kirov Military Medical Academy
														Email: doc.popov@gmail.com
				                	ORCID iD: 0000-0003-2767-7153
				                	SPIN-code: 3830-9539
							Scopus Author ID: 57197368945
											                								
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint Petersburg; Saint Petersburg; Saint PetersburgRuslan G. Guseinov
Clinical Hospital of St. Luke; Saint Petersburg Medical and Social Institute; Saint Petersburg State University
														Email: rusfa@yandex.ru
				                	ORCID iD: 0000-0001-9935-0243
				                	SPIN-code: 4222-4601
							Scopus Author ID: 57209859097
											                								
MD, Cand. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint Petersburg; Saint PetersburgKonstantin V. Sivak
Clinical Hospital of St. Luke; Smorodintsev Research Institute of Influenza
														Email: kvsivak@gmail.com
				                	ORCID iD: 0000-0003-4064-5033
				                	SPIN-code: 7426-8322
							Scopus Author ID: 35269910300
											                								
Dr. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgVitaliy V. Perepelitsa
Clinical Hospital of St. Luke; Saint Petersburg Medical and Social Institute
														Email: perepelitsa_vit@mail.ru
				                	ORCID iD: 0000-0002-7656-4473
				                	SPIN-code: 7445-1996
							Scopus Author ID: 14823999900
											                								
MD, Cand. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgNikolai S. Bunenkov
Clinical Hospital of St. Luke; Almazov National Medical Research Centre; Academician I.P. Pavlov First Saint Petersburg State Medical University
														Email: bunenkov2006@gmail.com
				                	ORCID iD: 0000-0003-4331-028X
				                	SPIN-code: 3611-1290
							Scopus Author ID: 57191173503
											                								
MD, Cand. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint Petersburg; Saint PetersburgTatiana A. Lelyavina
Clinical Hospital of St. Luke; Almazov National Medical Research Centre
							Author for correspondence.
							Email: tatianalelyavina@mail.com
				                	ORCID iD: 0000-0002-1834-4982
				                																			                								
MD, Dr. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgReferences
- Ostermann M, Basu RK, Mehta RL. Acute kidney injury. Intensive Care Med. 2023;49(2):219–222. doi: 10.1007/s00134-022-06946-0
- Jana S, Mitra P, Roy S. Proficient novel biomarkers guide early detection of acute kidney injury: A review. Diseases. 2022;11(1):8. doi: 10.3390/diseases11010008
- Chaïbi K, Ehooman F, Pons B, et al. Long-term outcomes after severe acute kidney injury in critically ill patients: the SALTO study. Ann Intensive Care. 2023;13(1):18. doi: 10.1186/s13613-023-01108-x
- Becker F, Van Poppel H, Hakenberg OW, et al. Assessing the impact of ischaemia time during partial nephrectomy. Eur Urol. 2009;56(4):625–634. doi: 10.1016/j.eururo.2009.07.016
- Shkarupa DD. Organ-preserving surgery of neoplasms of the Kidney: technique and functional results (experimental-clinical study) [dissertation abstract]. Saint Petersburg; 2009. 24 p. (In Russ.)
- Orvieto MA, Zom KC, Mendiola FP, et al. Ischemia preconditioning does not confer resilience to warm ischemia in a solitary porcine kidney model. Urology. 2007;69(5):984–987. doi: 10.1016/j.urology.2007.01.100
- Turgut F, Awad AS, Abdel-Rahman EM. Acute kidney injury: Medical causes and pathogenesis. J Clin Med. 2023;12(1):375. doi: 10.3390/jcm12010375
- Satalkar VS, Swamy KV. Pathophysiology of acute kidney injury on a molecular level: A brief review. MGM J Med Sci. 2022;9(4): 577–584. doi: 10.4103/mgmj.mgmj_161_22
- Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi: 10.1038/s41572-021-00284-z
- Liu C, Yan S, Wang Y, et al. Drug-induced hospital-acquired acute kidney injury in China: A multicenter cross-sectional survey. Kidney Dis (Basel). 2021;7(2):143–155. doi: 10.1159/000510455
- Sidorenko YuS, Ushakova ND, Maslov AA, Yashkina AV. Renal reperfusion lesion in patients with postrenal obstruction. General Reanimatology. 2007;3(6):164–167. EDN: IBZSKH doi: 10.15360/1813-9779-2007-6-164-167
- Yoon S-Y, Kim J-S, Jeong K-H, Kim S-K. Acute kidney injury: Biomarker-guided diagnosis and management. Medicina (Kaunas). 2022;58(3):340. doi: 10.3390/medicina58030340
- Schunk SJ, Zarbock A, Meersch M, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: An observational cohort study. Lancet. 2019;394(10197):488–496. doi: 10.1016/S0140-6736(19)30769-X
- de Geus HRH, Betjes MG, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5(2):102–108. doi: 10.1093/ckj/sfs008
- Kokkoris S, Pipili C, Grapsa E, et al. Novel biomarkers of acute kidney injury in the general adult ICU: a review. Ren Fail. 2013;35(4):579–591. doi: 10.3109/0886022X.2013.773835
- Tsigou E, Psallida V, Demponeras C, et al. Role of new biomarkers: functional and structural damage. Crit Care Res Pract. 2013;2013:361078. doi: 10.1155/2013/361078
- Chen DC, Potok OA, Rifkin D, Estrella MM. Advantages, limitations, and clinical considerations in using cystatin C to estimate GFR. Kidney360. 2022;3(10):1807–1814. doi: 10.34067/KID.0003202022
- Porrini E, Ruggenenti P, Luis-Lima S, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019;15(3):177–190. doi: 10.1038/s41581-018-0080-9
- Mårtensson J, Jonsson N, Glassford NJ, et al. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients. Ann Intensive Care. 2016;6(1):6. doi: 10.1186/s13613-016-0108-x
- Mussap M, Dalla Vestra M, Fioretto P, et al. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Clin Nephrol Epidimiol Clin Trials. 2002;61(4): 1453–1461. doi: 10.1046/j.1523-1755.2002.00253.x
- Proletov IaIu, Saganova ES, Smirnov AV. Biomarkers in the diagnosis of acute kidney injury. Communication I. Nephrology (Saint-Petersburg). 2014;18(4):25–35. EDN: SHOCVH
- Ah YL, Moo SP, Byung HP, et al. Value of serum cystatin C measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery. Yonsei Med J. 2017;58(3):604–612. doi: 10.3349/ymj.2017.58.3.604
- Pei Y, Zhou G, Wang P, et al. Serum cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, klotho and fibroblast growth factor-23 in the early prediction of acute kidney injury associated with sepsis in a Chinese emergency cohort study. Eur J Med Res. 2022;27(1):39. doi: 10.1186/s40001-022-00654-7
- Sandokji I, Greenberg JH. Biomarkers for acute kidney injury in children — where are we now? Curr Opin Pediatr. 2023;35(2): 245–250. doi: 10.1097/MOP.0000000000001217
- Hirooka Y, Nozaki Y. Interleukin-18 in inflammatory kidney disease. Front Med (Lausanne). 2021;8:639103. doi: 10.3389/fmed.2021.639103
- Shao X, Tian L, Xu W, et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS ONE. 2014;9(1): e84131. doi: 10.1371/journal.pone.0084131
- Geng J, Qiu Y, Qin Z, Su B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med. 2021;19(1):105. doi: 10.1186/s12967-021-02776-8
- Chang W, Zhu S, Pan C, et al. Predictive utilities of neutrophil gelatinase-associated lipocalin (NGAL) in severe sepsis. Clin Chim Acta. 2018;481:200–206. doi: 10.1016/j.cca.2018.03.020
- Iguchi N, Uchiyama A, Ueta K, et al. Neutrophil gelatinase-associated lipocalin and liver-type fatty acid-binding protein as biomarkers for acute kidney injury after organ transplantation. J Anesth. 2015;29(2):249–255. doi: 10.1007/s00540-014-1909-4
- Lipiec K, Adamczyk P, Świętochowska E, et al. L-FABP and IL-6 as markers of chronic kidney damage in children after hemolytic uremic syndrome. Adv Clin Exp Med. 2018;27(7):955–962. doi: 10.17219/acem/70567
- Kamijo-Ikemori A, Sugaya T, Ichikawa D, et al. Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta. 2013;424:104–108. doi: 10.1016/j.cca.2013.05.020
- Novak R, Salai G, Hrkac S, et al. Revisiting the Role of NAG across the continuum of kidney disease. Bioengineering. 2023;10(4):444. doi: 10.3390/bioengineering10040444
- Bíró E, Szegedi I, Kiss C, et al. The role of urinary N-acetyl-β-D-glucosaminidase in early detection of acute kidney injury among pediatric patients with neoplastic disorders in a retrospective study. BMC Pediatr. 2022;22(1):429. doi: 10.1186/s12887-022-03416-w
- Shu K-H, Wang C-H, Wu C-H, et al. Urinary π-glutathione S-transferase predicts advanced acute kidney injury following cardiovascular surgery. Sci Rep. 2016;6:26335. doi: 10.1038/srep26335
Supplementary files
 
				
			 
					 
						 
						 
									
 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted
