Clinical aspects of the applicability of biomarkers of acute kidney injury in ischemia-reperfusion in operative urology

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The development of acute kidney injury during surgical renal-preserving interventions characterizes the nature of the clinical course and prognosis for the development of chronic kidney disease. The use of standard indicators of disease progression (serum creatinine and urea nitrogen) in clinical practice can lead to unfavorable outcomes of acute kidney injury due to their low sensitivity and high specificity against the background of damage to more than 50% of the renal parenchyma). Other biomarkers of acute kidney injury (cystatin C, IL-18, KIM-1, NGAL, L-FABP, NAG and others) are superior to creatinine in sensitivity and specificity, but require additional research to identify the most optimal ones for clinical practice.

Full Text

Restricted Access

About the authors

Sergey V. Popov

Clinical Hospital of St. Luke; Saint Petersburg Medical and Social Institute; Kirov Military Medical Academy

Email: doc.popov@gmail.com
ORCID iD: 0000-0003-2767-7153
SPIN-code: 3830-9539
Scopus Author ID: 57197368945

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Ruslan G. Guseinov

Clinical Hospital of St. Luke; Saint Petersburg Medical and Social Institute; Saint Petersburg State University

Email: rusfa@yandex.ru
ORCID iD: 0000-0001-9935-0243
SPIN-code: 4222-4601
Scopus Author ID: 57209859097

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Konstantin V. Sivak

Clinical Hospital of St. Luke; Smorodintsev Research Institute of Influenza

Email: kvsivak@gmail.com
ORCID iD: 0000-0003-4064-5033
SPIN-code: 7426-8322
Scopus Author ID: 35269910300

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Vitaliy V. Perepelitsa

Clinical Hospital of St. Luke; Saint Petersburg Medical and Social Institute

Email: perepelitsa_vit@mail.ru
ORCID iD: 0000-0002-7656-4473
SPIN-code: 7445-1996
Scopus Author ID: 14823999900

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

Nikolai S. Bunenkov

Clinical Hospital of St. Luke; Almazov National Medical Research Centre; Academician I.P. Pavlov First Saint Petersburg State Medical University

Email: bunenkov2006@gmail.com
ORCID iD: 0000-0003-4331-028X
SPIN-code: 3611-1290
Scopus Author ID: 57191173503

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Tatiana A. Lelyavina

Clinical Hospital of St. Luke; Almazov National Medical Research Centre

Author for correspondence.
Email: tatianalelyavina@mail.com
ORCID iD: 0000-0002-1834-4982

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Ostermann M, Basu RK, Mehta RL. Acute kidney injury. Intensive Care Med. 2023;49(2):219–222. doi: 10.1007/s00134-022-06946-0
  2. Jana S, Mitra P, Roy S. Proficient novel biomarkers guide early detection of acute kidney injury: A review. Diseases. 2022;11(1):8. doi: 10.3390/diseases11010008
  3. Chaïbi K, Ehooman F, Pons B, et al. Long-term outcomes after severe acute kidney injury in critically ill patients: the SALTO study. Ann Intensive Care. 2023;13(1):18. doi: 10.1186/s13613-023-01108-x
  4. Becker F, Van Poppel H, Hakenberg OW, et al. Assessing the impact of ischaemia time during partial nephrectomy. Eur Urol. 2009;56(4):625–634. doi: 10.1016/j.eururo.2009.07.016
  5. Shkarupa DD. Organ-preserving surgery of neoplasms of the Kidney: technique and functional results (experimental-clinical study) [dissertation abstract]. Saint Petersburg; 2009. 24 p. (In Russ.)
  6. Orvieto MA, Zom KC, Mendiola FP, et al. Ischemia preconditioning does not confer resilience to warm ischemia in a solitary porcine kidney model. Urology. 2007;69(5):984–987. doi: 10.1016/j.urology.2007.01.100
  7. Turgut F, Awad AS, Abdel-Rahman EM. Acute kidney injury: Medical causes and pathogenesis. J Clin Med. 2023;12(1):375. doi: 10.3390/jcm12010375
  8. Satalkar VS, Swamy KV. Pathophysiology of acute kidney injury on a molecular level: A brief review. MGM J Med Sci. 2022;9(4): 577–584. doi: 10.4103/mgmj.mgmj_161_22
  9. Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi: 10.1038/s41572-021-00284-z
  10. Liu C, Yan S, Wang Y, et al. Drug-induced hospital-acquired acute kidney injury in China: A multicenter cross-sectional survey. Kidney Dis (Basel). 2021;7(2):143–155. doi: 10.1159/000510455
  11. Sidorenko YuS, Ushakova ND, Maslov AA, Yashkina AV. Renal reperfusion lesion in patients with postrenal obstruction. General Reanimatology. 2007;3(6):164–167. EDN: IBZSKH doi: 10.15360/1813-9779-2007-6-164-167
  12. Yoon S-Y, Kim J-S, Jeong K-H, Kim S-K. Acute kidney injury: Biomarker-guided diagnosis and management. Medicina (Kaunas). 2022;58(3):340. doi: 10.3390/medicina58030340
  13. Schunk SJ, Zarbock A, Meersch M, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: An observational cohort study. Lancet. 2019;394(10197):488–496. doi: 10.1016/S0140-6736(19)30769-X
  14. de Geus HRH, Betjes MG, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5(2):102–108. doi: 10.1093/ckj/sfs008
  15. Kokkoris S, Pipili C, Grapsa E, et al. Novel biomarkers of acute kidney injury in the general adult ICU: a review. Ren Fail. 2013;35(4):579–591. doi: 10.3109/0886022X.2013.773835
  16. Tsigou E, Psallida V, Demponeras C, et al. Role of new biomarkers: functional and structural damage. Crit Care Res Pract. 2013;2013:361078. doi: 10.1155/2013/361078
  17. Chen DC, Potok OA, Rifkin D, Estrella MM. Advantages, limitations, and clinical considerations in using cystatin C to estimate GFR. Kidney360. 2022;3(10):1807–1814. doi: 10.34067/KID.0003202022
  18. Porrini E, Ruggenenti P, Luis-Lima S, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019;15(3):177–190. doi: 10.1038/s41581-018-0080-9
  19. Mårtensson J, Jonsson N, Glassford NJ, et al. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients. Ann Intensive Care. 2016;6(1):6. doi: 10.1186/s13613-016-0108-x
  20. Mussap M, Dalla Vestra M, Fioretto P, et al. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Clin Nephrol Epidimiol Clin Trials. 2002;61(4): 1453–1461. doi: 10.1046/j.1523-1755.2002.00253.x
  21. Proletov IaIu, Saganova ES, Smirnov AV. Biomarkers in the diagnosis of acute kidney injury. Communication I. Nephrology (Saint-Petersburg). 2014;18(4):25–35. EDN: SHOCVH
  22. Ah YL, Moo SP, Byung HP, et al. Value of serum cystatin C measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery. Yonsei Med J. 2017;58(3):604–612. doi: 10.3349/ymj.2017.58.3.604
  23. Pei Y, Zhou G, Wang P, et al. Serum cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, klotho and fibroblast growth factor-23 in the early prediction of acute kidney injury associated with sepsis in a Chinese emergency cohort study. Eur J Med Res. 2022;27(1):39. doi: 10.1186/s40001-022-00654-7
  24. Sandokji I, Greenberg JH. Biomarkers for acute kidney injury in children — where are we now? Curr Opin Pediatr. 2023;35(2): 245–250. doi: 10.1097/MOP.0000000000001217
  25. Hirooka Y, Nozaki Y. Interleukin-18 in inflammatory kidney disease. Front Med (Lausanne). 2021;8:639103. doi: 10.3389/fmed.2021.639103
  26. Shao X, Tian L, Xu W, et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS ONE. 2014;9(1): e84131. doi: 10.1371/journal.pone.0084131
  27. Geng J, Qiu Y, Qin Z, Su B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med. 2021;19(1):105. doi: 10.1186/s12967-021-02776-8
  28. Chang W, Zhu S, Pan C, et al. Predictive utilities of neutrophil gelatinase-associated lipocalin (NGAL) in severe sepsis. Clin Chim Acta. 2018;481:200–206. doi: 10.1016/j.cca.2018.03.020
  29. Iguchi N, Uchiyama A, Ueta K, et al. Neutrophil gelatinase-associated lipocalin and liver-type fatty acid-binding protein as biomarkers for acute kidney injury after organ transplantation. J Anesth. 2015;29(2):249–255. doi: 10.1007/s00540-014-1909-4
  30. Lipiec K, Adamczyk P, Świętochowska E, et al. L-FABP and IL-6 as markers of chronic kidney damage in children after hemolytic uremic syndrome. Adv Clin Exp Med. 2018;27(7):955–962. doi: 10.17219/acem/70567
  31. Kamijo-Ikemori A, Sugaya T, Ichikawa D, et al. Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta. 2013;424:104–108. doi: 10.1016/j.cca.2013.05.020
  32. Novak R, Salai G, Hrkac S, et al. Revisiting the Role of NAG across the continuum of kidney disease. Bioengineering. 2023;10(4):444. doi: 10.3390/bioengineering10040444
  33. Bíró E, Szegedi I, Kiss C, et al. The role of urinary N-acetyl-β-D-glucosaminidase in early detection of acute kidney injury among pediatric patients with neoplastic disorders in a retrospective study. BMC Pediatr. 2022;22(1):429. doi: 10.1186/s12887-022-03416-w
  34. Shu K-H, Wang C-H, Wu C-H, et al. Urinary π-glutathione S-transferase predicts advanced acute kidney injury following cardiovascular surgery. Sci Rep. 2016;6:26335. doi: 10.1038/srep26335

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89281 от 21.04.2025.