Molecular mechanisms modulating hemostasis and development of acute pyelonephritis after contact ureteral lithotripsy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Improving the efficiency and reducing the frequency of complications of surgical treatment of urolithiasis is an actual problem in urology.

AIM: To establish the molecular mechanisms that modulate the hemostasis and development of acute pyelonephritis after percutaneous contact ureteral lithotripsy.

MATERIALS AND METHODS: The study included 21 patients with urolithiasis and concretions in the upper third of the ureter in whom, after standard lithokinetic therapy for 7 days, according to imaging control data, the calculus did not move from the pyelo-ureteral zone to the middle third of the ureter. All patients underwent contact ureteral lithotripsy. After the operation, nonsteroidal anti-inflammatory drugs and antibiotics were used for 2 days. The severity of hematuria and leukocyturia was assessed 24, 48, and 72 h after contact ureteral lithotripsy. Functional activity receptors were analyzed in vitro on a platelet suspension. Platelet aggregation was assessed by the turbidimetric method using a ChronoLog analyzer (USA).

RESULTS: At 24, 48, and 72 h after contact ureteral lithotripsy, a significant decrease was found in the severity of microhematuria (p < 0.001). The leukocyturia level decreased over 48 h (p < 0.05) and increased 72 h after surgery (p < 0.001). The above dynamics of complications after hours indicates that two pathological processes simultaneously develop in the ureteral mucosa: induction of thrombogenesis and modulation of an acute inflammatory reaction. Аfter 24 h of NSAID discontinuation (3 days after contact ureteral lithotripsy), normoreactivity of the α2-adrenergic receptors, GPVI receptors, AT1 receptors, PAF receptors, P2X1 receptors, and A2A receptors was found, as well as hyporeactivity of purine P2Y receptors and β2-adrenergic receptors. The correlation between the severity of hematuria and the activity of GPVI receptors for collagen, α2-adrenergic receptors for adrenaline, and AT1 receptors for angiotensin-2 (p < 0.05) makes it possible to specify the possible interaction of platelet receptors that maintain hemostasis during inhibition of the COX–TxA2 axis. Maintaining the severity of pyelonephritis after contact ureteral lithotripsy is associated with the interaction of the PAF receptors, purine ionotropic P2X1 receptors, and α2-adrenergic receptors on blood cells.

CONCLUSIONS: The analysis of targets — receptors on platelets and leukocytes after contact ureteral lithotripsy in the upper third of the ureter with ineffective lithokinetic therapy—allows us to outline ways to improve conservative therapy to limit the development of postoperative complications.

Full Text

Restricted Access

About the authors

Eduard F. Barinov

M. Gorky Donetsk National Medical University

Author for correspondence.
Email: barinov.ef@gmail.com
ORCID iD: 0000-0002-8070-2242
SPIN-code: 4185-0007

Dr. Sci. (Med.), Professor, Head of the Department of Histology, Cytology and Embryology

Donetsk People's Republic, Donetsk

Yurii Yu. Malinin

M. Gorky Donetsk National Medical University

Email: jora2@list.ru
ORCID iD: 0000-0002-7809-5260
SPIN-code: 5106-9500

Cand. Sci. (Med.), Head of the Department of Urology

Donetsk People's Republic, Donetsk

References

  1. Prosyannikov MYu, Zolotuhin OV, Madykin YuYu, et al. An influence of herbal plant based on the combination of natural terpenes, vitamin Е and essential oil on the spontaneous stone passage after extracorporeal shock-wave lithotripsy. Urologiia. 2020;(4):44–48. (In Russ.) doi: 10.18565/urology.2020.4.45-49
  2. Naboka YuL, Kogan MI, Gudima IA, et al. Long-term monitoring of leukocyturia and bacteriuria after acute obstructive pyelonephritis. Urologiia. 2018;(4):44–48. (In Russ.) doi: 10.18565/urology.2018.4.44-48
  3. Clark JC, Kavanagh DM, Watson S, et al. Adenosine and Forskolin Inhibit Platelet Aggregation by Collagen but not the Proximal Signalling Events. Thromb Haemost. 2019;119(7):1124–1137. doi: 10.1055/s-0039-1688788
  4. Docherty JR. The pharmacology of α1-adrenoceptor subtypes. Eur J Pharmacol. 2019;855:305–320. doi: 10.1016/j.ejphar.2019.04.047
  5. Ou Z, Dolmatova E, Lassègue B, Griendling KK. β1- and β2-integrins: central players in regulating vascular permeability and leukocyte recruitment during acute inflammation. Am J Physiol Heart Circ Physiol. 2021;320(2):H734–H739. doi: 10.1152/ajpheart.00518.2020
  6. Morsing SKH, Rademakers T, Brouns SLN, et al. ADAM10-Mediated Cleavage of ICAM-1 is Involved in Neutrophil Transendothelial Migration. Cells. 2021;10(2):232. doi: 10.3390/cells10020232
  7. Downey P, Tolley DA, Johnston SR, Young M. Ischemia-reperfusion injury after relief of ureteral obstruction: an animal study. J Endourol. 2001;15(2):209–211. doi: 10.1089/089277901750134647
  8. Gecit I, Kavak S, Oguz EK, et al. Tissue damage in kidney, adrenal glands and diaphragm following extracorporeal shock wave lithotripsy. Toxicol Ind Health. 2014;30(9):845–850. doi: 10.1177/0748233712462481
  9. Chung JM, Park BK, Kim JH, et al. Impact of repeated extracorporeal shock wave lithotripsy on prepubertal rat kidney. Urolithiasis. 2018;46:549–558. doi: 10.1007/s00240-017-1011-0
  10. Sokolis DP, Petsepe DC, Papadodima SA, Kourkoulis SK. Age- and region-related changes in the biomechanical properties and composition of the human ureter. J Biomech. 2017;51:57–64. doi: 10.1016/j.jbiomech.2016.11.067
  11. Kawano Y, Katsuyama M, Nagata M, et al. Antiplatelet Effect of Mirtazapine via Co-blocking of the 5-HT2A and α2-Adrenergic Receptors on Platelets. Biol Pharm Bull. 2021;44(2):238–244. doi: 10.1248/bpb.b20-00698
  12. Perrella G, Huang J, Provenzale I, et al. Nonredundant Roles of Platelet Glycoprotein VI and Integrin αIIbβ3 in Fibrin-Mediated Microthrombus Formation. Arterioscler Thromb Vasc Biol. 2021;41(2): e97–e111. doi: 10.1161/ATVBAHA.120.314641
  13. Lecut C, Schoolmeester A, Kuijpers MJE, et al. Principal role of glycoprotein VI in α2β1 and αIIbβ3 activation during collagen-induced thrombus formation. Arterioscler Thromb Vasc Biol. 2004;24(9): 1727–1733. doi: 10.1161/01.ATV.0000137974.85068.93
  14. Marketou ME, Kontaraki JE, Papadakis JA, et al. Increased platelet α2β-adrenergic receptor gene expression in well-controlled hypertensives: the effect of arterial stiffness. J Am Soc Hypertens. 2017;11(11):762–768. doi: 10.1016/j.jash.2017.08.006
  15. Palur Ramakrishnan AVK, Varghese TP, Vanapalli S, et al. Platelet activating factor: A potential biomarker in acute coronary syndrome? Cardiovasc Ther. 2017;35(1):64–70. doi: 10.1111/1755-5922.12233
  16. Sumanth MS, Jacob SP, Abhilasha KV, et al. Different glycoforms of alpha-1-acid glycoprotein contribute to its functional alterations in platelets and neutrophils. J Leukoc Biol. 2021;109(5):915–930. doi: 10.1002/JLB.3A0720-422R
  17. Souza PR, Walker ME, Goulding NJ, et al. The GPR40 Agonist GW9508 Enhances Neutrophil Function to Aid Bacterial Clearance During E. coli Infections. Front Immunol. 2020;11:573019. doi: 10.3389/fimmu.2020.573019
  18. Nomikos T, Fragopoulou E, Antonopoulou S, Panagiotakos DB. Mediterranean diet and platelet-activating factor; a systematic review. Clin Biochem. 2018;60:1–10. doi: 10.1016/j.clinbiochem.2018.08.004
  19. Schaefer MB, Schaefer CA, Hecker M, et al. Co-incubation of PMN and CaCo-2 cells modulates inflammatory potential. Cell Mol Biol. 2017;63(5–5):119–126. doi: 10.14715/cmb/2017.63.5.22
  20. Correa-Costa M, Andrade-Oliveira V, Braga TT, et al. Activation of platelet-activating factor receptor exacerbates renal inflammation and promotes fibrosis. Lab Invest. 2014;9:455–466. doi: 10.1038/labinvest.2013.155
  21. Lindkvist M, Fernberg U, Ljungberg LU, et al. Individual variations in platelet reactivity towards ADP, epinephrine, collagen and nitric oxide, and the association to arterial function in young, healthy adults. Thromb Res. 2019;174:5–12. doi: 10.1016/j.thromres.2018.12.008
  22. Aslam M, Gündüz D, Troidl C, et al. Purinergic Regulation of Endothelial Barrier Function. Int J Mol Sci. 2021;22(3):1207. doi: 10.3390/ijms22031207
  23. Suurväli J, Boudinot P, Kanellopoulos J, Rüütel Boudinot S. P2X4: A fast and sensitive purinergic receptor. Biomed J. 2017;40(5): 245–256. doi: 10.1016/j.bj.2017.06.010.
  24. Kameritsch P, Pogoda K. The Role of Connexin 43 and Pannexin 1 During Acute Inflammation. Front Physiol. 2020;11:594097. doi: 10.3389/fphys.2020.594097
  25. Borst O, Gawaz M. Glycoprotein VI — novel target in antiplatelet medication. Pharmacol Ther. 2021;217:107630. doi: 10.1016/j.pharmthera.2020.107630
  26. Vecchio EA, White PJ, May LT. The adenosine A2BG protein-coupled receptor: Recent advances and therapeutic implications. Pharmacol Ther. 2019;198:20–33. doi: 10.1016/j.pharmthera.2019.01.003
  27. Martinod K, Deppermann C. Immunothrombosis and thromboinflammation in host defense and disease. Platelets. 2021;32(3):314–324. doi: 10.1080/09537104.2020.1817360
  28. Fawzi A, Robinet A, Monboisse JC, et al. A peptide of the alpha 3(IV) chain of type IV collagen modulates stimulated neutrophil function via activation of cAMP-dependent protein kinase and Ser/Thr protein phosphatase. Cell Signal. 2000;12(5):327–335. doi: 10.1016/s0898-6568(00)00074-7
  29. Marchand M, Monnot C, Muller L, Germain S. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol. 2019;89:147–156. doi: 10.1016/j.semcdb.2018.08.007

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ №ФС77-65570 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies