Stimulation of bone regeneration using bone morphogenetic proteins: modern concepts
- Authors: Mukhametov U.F.1, Lyulin S.V.2, Borzunov D.Y.3, Gareev I.F.4
-
Affiliations:
- G.G. Kuvatov Republican Clinical Hospital
- Medical Center “Carmel”
- Ural State Medical University
- Bashkir State Medical University
- Issue: Vol 13, No 4 (2021)
- Pages: 15-30
- Section: Reviews
- URL: https://journals.eco-vector.com/vszgmu/article/view/82711
- DOI: https://doi.org/10.17816/mechnikov82711
Cite item
Abstract
It is known that the restoration of fractures or bone defects after trauma is one of the urgent problems of modern orthopedics and traumatology. Bone morphogenetic proteins (BMPs) are a group of growth and differentiation factors that are a large subfamily of the transforming growth factor-β (TGF-β) superfamily. To date, more than 20 types of different BMPs have been identified based on structural similarities, and it has been found that some of them, like BMP-2, -4, -6, -7, and -9, have the most pronounced osteogenic properties. BMPs induce migration, proliferation, and differentiation of undifferentiated mesenchymal stem cells to form osteoblasts and chondroblasts. BMPs have significant inductive effects on various stages of the bone healing process, such as inflammation, angiogenesis, callus formation, and bone remodeling. It is known that recombinant (rh) rhBMP-2 and rhBMP-7 (approved for clinical use in humans by the USA Food and Drug Administration (FDA)), together with the use of bone grafts, they are used to activate reparative osteogenesis in injuries and to replace bone defects in spinal surgery. Therefore, due to its unique properties, the use of BMPs in bone tissue regeneration is one of the most promising and rapidly developing directions in practical medicine. This review discusses the most important concepts regarding the use of BMPs in stimulating bone regeneration, including their mechanisms of action, modes of use, efficacy, and their advantages and disadvantages.
Full Text

About the authors
Ural F. Mukhametov
G.G. Kuvatov Republican Clinical Hospital
Email: ufa.rkbkuv@doctorrb.ru
ORCID iD: 0000-0003-3694-3302
MD, Cand. Sci. (Med.)
Russian Federation, 3 Lenin St., Ufa, 450008Sergey V. Lyulin
Medical Center “Carmel”
Email: carmel74@yandex.ru
ORCID iD: 0000-0002-2549-1059
SPIN-code: 4968-8680
Scopus Author ID: 6701421057
ResearcherId: M-8114-2013
MD, Dr. Sci. (Med.), Professor
Russian Federation, ChelyabinskDmitry Yu. Borzunov
Ural State Medical University
Email: borzunov@bk.ru
ORCID iD: 0000-0003-3720-5467
SPIN-code: 6858-8005
Scopus Author ID: 17433431500
MD, Dr. Sci. (Med.), Professor
Russian Federation, EkaterinburgIlgiz F. Gareev
Bashkir State Medical University
Author for correspondence.
Email: ilgiz_gareev@mail.ru
ORCID iD: 0000-0002-4965-0835
SPIN-code: 3839-0621
Scopus Author ID: 57206481534
MD, PhD
Russian Federation, 3 Lenin St., Ufa, 450008References
- Kolsanov AV, Suslin SA, Vavilov AV, et al. Prevention of time risks, medical and economic costs during planned hospitalization in a multidisciplinary hospital. Profilakticheskaya Meditsina. 2021;24(7):117–122. (In Russ.). doi: 10.17116/profmed202124071117
- Ananeva AS, Baraeva LM, Bykov IM, et al. Modeling of bone injuries in animal experiments. Innovative Medicine of Kuban. 2021;(1):47–55. (In Russ.). doi: 10.35401/2500-0268-2021-21-1-47-55
- Zhang Y, Ma J, Zhang W. Berberine for bone regeneration: Therapeutic potential and molecular mechanisms. J Ethnopharmacol. 2021;277:114249. doi: 10.1016/j.jep.2021.114249
- Bal Z, Kushioka J, Kodama J, et al. BMP and TGFbeta use and release in bone regeneration. Turk J Med Sci. 2020;50(SI–2):1707–1722. doi: 10.3906/sag-2003-127
- Sampath TK, Reddi AH. Discovery of bone morphogenetic proteins – A historical perspective. Bone. 2020;140:115548. doi: 10.1016/j.bone.2020.115548
- Wu Z, Zhou B, Chen L, et al. Bone morphogenetic protein-2 against iliac crest bone graft for the posterolateral fusion of the lumbar spine: A meta-analysis. Int J Clin Pract. 2021;75(4):e13911. doi: 10.1111/ijcp.13911
- Kuznetsova VS, Vasilyev AV, Bukharova TB, et al. Safety and efficacy of BMP-2 and BMP-7 use in dentistry. Stomatologiya (Mosk). 2019;98(1):64–69. (In Russ.). doi: 10.17116/stomat20199801164
- Bannwarth M, Smith JS, Bess S, et al. Use of rhBMP-2 for adult spinal deformity surgery: patterns of usage and changes over the past decade. Neurosurg Focus. 2021;50(6):E4. doi: 10.3171/2021.3.FOCUS2164
- Christian J. A tale of two receptors: Bmp heterodimers recruit two type I receptors but use the kinase activity of only one. Proc Natl Acad Sci USA. 2021;118(19):e2104745118. doi: 10.1073/pnas.2104745118
- Vassiliou AG, Keskinidou C, Kotanidou A, et al. Knockdown of bone morphogenetic protein type II receptor leads to decreased aquaporin 1 expression and function in human pulmonary microvascular endothelial cells. Can J Physiol Pharmacol. 2020;98(11):834–839. doi: 10.1139/cjpp-2020-0185
- Sun W, Li M, Zhang Y, et al. Total flavonoids of rhizoma drynariae ameliorates bone formation and mineralization in BMP-SMAD signaling pathway induced large tibial defect rats. Biomed Pharmacother. 2021;138:111480. doi: 10.1016/j.biopha.2021.111480
- Luo X, Chang HM, Yi Y, et al. Bone morphogenetic protein 2 upregulates SERPINE2 expression through noncanonical SMAD2/3 and p38 MAPK signaling pathways in human granulosa-lutein cells. FASEB J. 2021;35(9):e21845. doi: 10.1096/fj.202100670RR
- Osses N, Gutierrez J, Lopez-Rovira T, et al. Sulfation is required for bone morphogenetic protein 2-dependent Id1 induction. Biochem Biophys Res Commun. 2006;344(4):1207–1215. doi: 10.1016/j.bbrc.2006.04.029
- Zhao B, Katagiri T, Toyoda H, et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem. 2006;281(32):23246–2353. doi: 10.1074/jbc.M511039200
- Zhou H, Qian J, Wang J, et al. Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo. Biomaterials. 2009;30(9):1715–1724. doi: 10.1016/j.biomaterials.2008.12.016
- Chen R, Yu J, Gong HL, et al. An easy long-acting BMP7 release system based on biopolymer nanoparticles for inducing osteogenic differentiation of adipose mesenchymal stem cells. J Tissue Eng Regen Med. 2020;14(7):964–972. doi: 10.1002/term.3070
- Todd GM, Gao Z, Hyvönen M, et al. Secreted BMP antagonists and their role in cancer and bone metastases. Bone. 2020;137:115455. doi: 10.1016/j.bone.2020.115455
- Gao Y, Zhang M, Tian X, et al. Experimental animal study on BMP-3 expression in periodontal tissues in the process of orthodontic tooth movement. Exp Ther Med. 2019;17(1):193–198. doi: 10.3892/etm.2018.6950
- Iyer S, Pennisi DJ, Piper M. Crim1-, a regulator of developmental organogenesis. Histol Histopathol. 2016;31(10):1049–1057. doi: 10.14670/HH-11-766
- Zhao HJ, Chang HM, Klausen C, et al. Bone morphogenetic protein 2 induces the activation of WNT/beta-catenin signaling and human trophoblast invasion through up-regulating BAMBI. Cell Signal. 2020;67:109489. doi: 10.1016/j.cellsig.2019.109489
- Madhu V, Kilanski A, Reghu N, et al. Expression of CD105 and CD34 receptors controls BMP-induced in vitro mineralization of mouse adipose-derived stem cells but does not predict their in vivo bone-forming potential. J Orthop Res. 2015;33(5):625–632. doi: 10.1002/jor.22883
- Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, et al. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol. 2019;247(1):9–20. doi: 10.1002/path.5170
- El Bialy I, Jiskoot W, Reza Nejadnik M. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34(6):1152–1170. doi: 10.1007/s11095-017-2147-x
- Engstrand T, Veltheim R, Arnander C, et al. A novel biodegradable delivery system for bone morphogenetic protein-2. Plast Reconstr Surg. 2008;121(6):1920–1928. doi: 10.1097/PRS.0b013e31817151b0
- Briquez PS, Tsai HM, Watkins EA, Hubbell JA. Engineered bridge protein with dual affinity for bone morphogenetic protein-2 and collagen enhances bone regeneration for spinal fusion. Sci Adv. 2021;7(24):eabh4302. doi: 10.1126/sciadv.abh4302
- Yang X, Han G, Pang X, Fan M. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J Biomed Mater Res A. 2020;108(12):2519–2526. doi: 10.1002/jbm.a.34064
- Fischer J, Kolk A, Wolfart S, et al. Future of local bone regeneration – Protein versus gene therapy. J Craniomaxillofac Surg. 2011;39(1):54–64. doi: 10.1016/j.jcms.2010.03.016
- Mirmohseni F, Cheng T, Oveissi F, et al. Optimized synthesis of poly(deoxyribose) isobutyrate, a viscous biomaterial for bone morphogenetic protein-2 delivery. ACS Appl Mater Interfaces. 2019;11(3):2870–2879. doi: 10.1021/acsami.8b20126
- Carreira AC, Lojudice FH, Halcsik E, et al. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014;93(4):335–345. doi: 10.1177/0022034513518561
- Chen R, Yu Y, Zhang W, et al. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies. Acta Biomater. 2018;80:108–120. doi: 10.1016/j.actbio.2018.09.011
- Wang J, Zhang H, Zhu X, et al. Dynamic competitive adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and microstructure. J Biomed Mater Res B Appl Biomater. 2013;101(6):1069–1077. doi: 10.1002/jbm.b.32917
- Shiels SM, Solomon KD, Pilia M, et al. BMP-2 tethered hydroxyapatite for bone tissue regeneration: Coating chemistry and osteoblast attachment. J Biomed Mater Res A. 2012;100(11):3117–3123. doi: 10.1002/jbm.a.34241
- Cheng CH, Lai YH, Chen YW, et al. Immobilization of bone morphogenetic protein-2 to gelatin/avidin-modified hydroxyapatite composite scaffolds for bone regeneration. J Biomater Appl. 2019;33(9):1147–1156. doi: 10.1177/0885328218820636
- Chien CY, Tsai WB. Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces. 2013;5(15):6975–6983. doi: 10.1021/am401071f
- Ko E, Yang K, Shin J, Cho SW. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules. 2013;14(9):3202–3213. doi: 10.1021/bm4008343
- Ruhé PQ, Kroese-Deutman HC, Wolke JG, et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials. 2004;25(11):2123–2132. doi: 10.1016/j.biomaterials.2003.09.007
- Zhao J, Shen G, Liu C, et al. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds. Tissue Eng Part A. 2012;18(1–2):185–197. doi: 10.1089/ten.TEA.2011.0297
- Kim MG, Kim CL, Kim YS, et al. Selective endocytosis of recombinant human BMP through cell surface heparan sulfate proteoglycans in CHO cells: BMP-2 and BMP-7. Sci Rep. 2021;11(1):3378. doi: 10.1038/s41598-021-82955-1
- Haubruck P, Tanner MC, Vlachopoulos W, et al. Comparison of the clinical effectiveness of Bone Morphogenic Protein (BMP) -2 and -7 in the adjunct treatment of lower limb nonunions. Orthop Traumatol Surg Res. 2018;104(8):1241–1248. doi: 10.1016/j.otsr.2018.08.008
- Teng F, Yu D, Wei L, et al. Preclinical application of recombinant human bone morphogenetic protein 2 on bone substitutes for vertical bone augmentation: A systematic review and meta-analysis. J Prosthet Dent. 2019;122(4):355–363. doi: 10.1016/j.prosdent.2018.09.008
- Nauth A, Schemitsch E, Norris B, et al. Critical-size bone defects: is there a consensus for diagnosis and treatment? J Orthop Trauma. 2018;32 Suppl 1:S7–S11. doi: 10.1097/BOT.0000000000001115
- Wikesjö UM, Polimeni G, Qahash M. Tissue engineering with recombinant human bone morphogenetic protein-2 for alveolar augmentation and oral implant osseointegration: experimental observations and clinical perspectives. Clin Implant Dent Relat Res. 2005;7(2):112–119. doi: 10.1111/j.1708-8208.2005.tb00054.x
- Long J, Li P, Du HM, et al. Effects of bone morphogenetic protein 2 gene therapy on new bone formation during mandibular distraction osteogenesis at rapid rate in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(1):50–57. doi: 10.1016/j.tripleo.2010.09.065
- Turgeman G, Zilberman Y, Zhou S, et al. Systemically administered rhBMP-2 promotes msc activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem. 2002;86(3):461–474. doi: 10.1002/jcb.10231
- Crasto GJ, Kartner N, Reznik N, et al. Controlled bone formation using ultrasound-triggered release of BMP-2 from liposomes. J Control Release. 2016;243:99–108. doi: 10.1016/j.jconrel.2016.09.032
- Smith DM, Afifi AM, Cooper GM, et al. BMP-2-based repair of large-scale calvarial defects in an experimental model: regenerative surgery in cranioplasty. J Craniofac Surg. 2008;19(5):1315–1322. doi: 10.1097/SCS.0b013e3181843369
- Kerzner B, Martin HL, Weiser M, et al. A Reliable and reproducible critical-sized segmental femoral defect model in rats stabilized with a custom external fixator. J Vis Exp. 2019;(145):10.3791/59206. doi: 10.3791/59206
- Liu F, Wells JW, Porter RM, et al. Interaction between living bone particles and rhBMP-2 in large segmental defect healing in the rat femur. J Orthop Res. 2016;34(12):2137–2145. doi: 10.1002/jor.23255
- Lee J, Decker JF, Polimeni G, et al. Evaluation of implants coated with rhBMP-2 using two different coating strategies: a critical-size supraalveolar peri-implant defect study in dogs. J Clin Periodontol. 2010;37(6):582–590. doi: 10.1111/j.1600-051X.2010.01557.x
- Ripamonti U, van den Heever B, Sampath TK, et al. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). Growth Factors. 1996;13(3–4):273–289. doi: 10.3109/08977199609003228
- Vincentelli AF, Szadkowski M, Vardon D, et al. rhBMP-2 (Recombinant Human Bone Morphogenetic Protein-2) in real world spine surgery. A phase IV, National, multicentre, retrospective study collecting data from patient medical files in French spinal centres. Orthop Traumatol Surg Res. 2019;105(6):1157–1163. doi: 10.1016/j.otsr.2019.04.023
- Baltzer AW, Ostapczuk MS, Stosch D, Granrath M. The use of recombinant human bone morphogenetic protein-2 for the treatment of a delayed union following femoral neck open-wedge osteotomy. Orthop Rev (Pavia). 2012;4(1):e4. doi: 10.4081/or.2012.e4
- Julka A, Shah AS, Miller BS. Inflammatory response to recombinant human bone morphogenetic protein-2 use in the treatment of a proximal humeral fracture: a case report. J Shoulder Elbow Surg. 2012;21(1):e12–16. doi: 10.1016/j.jse.2011.06.006
- Von Rüden C, Morgenstern M, Hierholzer C, et al. The missing effect of human recombinant Bone Morphogenetic Proteins BMP-2 and BMP-7 in surgical treatment of aseptic forearm nonunion. Injury. 2016;47(4):919–924. doi: 10.1016/j.injury.2015.11.038
- Murena L, Canton G, Vulcano E, et al. Treatment of humeral shaft aseptic nonunions in elderly patients with opposite structural allograft, BMP-7, and mesenchymal stem cells. Orthopedics. 2014;37(2):e201–e206. doi: 10.3928/01477447-20140124-26
- Ollivier M, Gay AM, Cerlier A, et al. Can we achieve bone healing using the diamond concept without bone grafting for recalcitrant tibial nonunions? Injury. 2015;46(7):1383–1388. doi: 10.1016/j.injury.2015.03.036
- Calori GM, Colombo M, Bucci M, et al. Clinical effectiveness of Osigraft in long-bones nonunions. Injury. 2015;46 Suppl 8:S55–S64. doi: 10.1016/S0020-1383(15)30056-5
- Durdevic D, Vlahovic T, Pehar S, et al. A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures. Bone. 2020;140:115551. doi: 10.1016/j.bone.2020.115551
- Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84(12):2123–2134. doi: 10.2106/00004623-200212000-00001
- Sudsakorn S, Bahadduri P, Fretland J, Lu C. 2020 FDA Drug-drug Interaction Guidance: A comparison analysis and action plan by pharmaceutical industrial scientists. Curr Drug Metab. 2020;21(6):403–426. doi: 10.2174/1389200221666200620210522
- Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 2):S151–158.
- McKee MD, Schemitsch EH, Waddell JP, et al. The effect of human recombinant bone morphogenic protein (rhBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective, randomized clinical trial. In: Proceedings of the 18th Annual Meeting of the Orthopaedic Trauma Association; 2002 Oct 11-13, Toronto, ON, Canada [Internet]. Available from: www.hwbf.org/ota/am/ota02/otapa/OTA02745.htm. Accessed: Dec 9, 2009.
- Bong MR, Capla EL, Egol KA, et al. Osteogenic protein-1 (bone morphogenic protein-7) combined with various adjuncts in the treatment of humeral diaphyseal nonunions. Bull Hosp Jt Dis. 2005;63(1–2):20–23.
- Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors. 2014;40(5):459–481. doi: 10.1002/biof.1177
- Kanjilal D, Cottrell JA. Bone morphogenetic proteins (BMP) and bone regeneration. Methods Mol Biol. 2019;1891:235–245. doi: 10.1007/978-1-4939-8904-1_17
- Jain A, Yeramaneni S, Kebaish KM, et al. Cost-utility analysis of rhBMP-2 use in adult spinal deformity surgery. Spine (Phila Pa 1976). 2020;45(14):1009–1015. doi: 10.1097/BRS.0000000000003442
- Krishnakumar GS, Roffi A, Reale D, et al. Clinical application of bone morphogenetic proteins for bone healing: a systematic review. Int Orthop. 2017;41(6):1073–1083. doi: 10.1007/s00264-017-3471-9
- Lochmann A, Nitzsche H, von Einem S, et al. The influence of covalently linked and free polyethylene glycol on the structural and release properties of rhBMP-2 loaded microspheres. J Control Release. 2010;147(1):92–100. doi: 10.1016/j.jconrel.2010.06.021
- Alam S, Ueki K, Nakagawa K, et al. Statin-induced bone morphogenetic protein (BMP) 2 expression during bone regeneration: an immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(1):22–29. doi: 10.1016/j.tripleo.2008.06.025
- Summary of safety and effectiveness data. 2002. The InFUSE™ Bone Graft/LT-CAGE™ Lumbar Tapered Fusion Device [Internet]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf/P000058b.pdf. Accessed: Feb 14, 2010.
- Carragee EJ, Chu G, Rohatgi R, et al. Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surg Am. 2013;95(17):1537–1545. doi: 10.2106/jbjs.l.01483
- Kelly MP, Savage JW, Bentzen SM, et al. Cancer risk from bone morphogenetic protein exposure in spinal arthrodesis. J Bone Joint Surg Am. 2014;96(17):1417–1422. doi: 10.2106/jbjs.m.01190
- Wang X, Huang J, Huang F, et al. Bone morphogenetic protein 9 stimulates callus formation in osteoporotic rats during fracture healing. Mol Med Rep. 2017;15(5):2537–2545. doi: 10.3892/mmr.2017.6302
- Rittenberg B, Partridge E, Baker G, et al. Regulation of BMP-induced ectopic bone formation by Ahsg. J Orthop Res. 2005;23(3):653–662. doi: 10.1016/j.orthres.2004.11.010
- Ueland T, Stilgren L, Bollerslev J. Bone matrix levels of dickkopf and sclerostin are positively correlated with bone mass and strength in postmenopausal osteoporosis. Int J Mol Sci. 2019;20(12):2896. doi: 10.3390/ijms20122896
Supplementary files
