Absence of global solutions of a mixed problem for a Ginzburg–Landau type nonline-ar evolution equation
- Authors: Nasibov S.M.1
-
Affiliations:
- Institute of Applied Mathematics, Baku State University
- Issue: Vol 484, No 2 (2019)
- Pages: 147-149
- Section: Mathematics
- URL: https://journals.eco-vector.com/0869-5652/article/view/11716
- DOI: https://doi.org/10.31857/S0869-56524842147-149
- ID: 11716
Cite item
Abstract
We study the problem of the absence of global solutions of the first mixed problem for one nonlinear evolution equation of Ginzburg–Landau type.We prove that global solutions of the studied problem are absent for “sufficiently large” values of the initial data.
Full Text

About the authors
Sh. M. Nasibov
Institute of Applied Mathematics, Baku State University
Author for correspondence.
Email: nasibov_sharif@hotmail.com
Azerbaijan
References
- Rypdal K., Rasmussen J.J. // Phys. Scr. I. II. 1986. V. 33. P. 481–504.
- Захаров В.Е., Шабат A.Б. // ЖЭТФ. 1971. Т. 61. № 1. С. 118–134.
- Луговой В.И., Прохоров А.М. // УФН. 1973. Т. 111. № 11. С. 203–247.
- Насибов Ш.М. // ДАН. 1985. Т. 285. № 4. С. 807–811.
- Насибов Ш.М. // ДАН. 1989. Т. 304. № 2. С. 285–289.
- Насибов Ш.М. // ДАН. 1989. Т. 307. № 3. С. 538–542.
- Шабат А.Б. В кн.: Динамика сплошной среды. Новосибирск, 1969. В. 1. С. 180–194.
- Кудряшов О.И. // Сиб. мат. журн. 1975. Т. 16. № 4. С. 866–868.
- Weinstein M. // Communs Partial and Different. Equats. 1986. V. 11. P. 545–565.
- Nawa H. // Communs Pure and Appl. Math. 1999. V. 52. № 2. P. 193–270.
- Насибов Ш.М. // Дифференц. уравнения. 2003. Т. 39. № 8. С. 1087–1091.
- Nasibov Sh.M. // J. Appl. Math. 2004. V. 1. P. 23–35.
- Ginibre J., Velo G. // Physica D. 1996. V. 95. P. 191–238.
- Ginibre J., Velo G. // Communs Math. Phys. 1997. V. 187. P. 45–79.
- Владимиров В.С. Уравнения математической физики. М., 1981.
Supplementary files
