Absence of global solutions of a mixed problem for a Ginzburg–Landau type nonline-ar evolution equation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the problem of the absence of global solutions of the first mixed problem for one nonlinear evolution equation of Ginzburg–Landau type.We prove that global solutions of the studied problem are absent for “sufficiently large” values of the initial data.

Full Text

Restricted Access

About the authors

Sh. M. Nasibov

Institute of Applied Mathematics, Baku State University

Author for correspondence.
Email: nasibov_sharif@hotmail.com
Azerbaijan

References

  1. Rypdal K., Rasmussen J.J. // Phys. Scr. I. II. 1986. V. 33. P. 481–504.
  2. Захаров В.Е., Шабат A.Б. // ЖЭТФ. 1971. Т. 61. № 1. С. 118–134.
  3. Луговой В.И., Прохоров А.М. // УФН. 1973. Т. 111. № 11. С. 203–247.
  4. Насибов Ш.М. // ДАН. 1985. Т. 285. № 4. С. 807–811.
  5. Насибов Ш.М. // ДАН. 1989. Т. 304. № 2. С. 285–289.
  6. Насибов Ш.М. // ДАН. 1989. Т. 307. № 3. С. 538–542.
  7. Шабат А.Б. В кн.: Динамика сплошной среды. Новосибирск, 1969. В. 1. С. 180–194.
  8. Кудряшов О.И. // Сиб. мат. журн. 1975. Т. 16. № 4. С. 866–868.
  9. Weinstein M. // Communs Partial and Different. Equats. 1986. V. 11. P. 545–565.
  10. Nawa H. // Communs Pure and Appl. Math. 1999. V. 52. № 2. P. 193–270.
  11. Насибов Ш.М. // Дифференц. уравнения. 2003. Т. 39. № 8. С. 1087–1091.
  12. Nasibov Sh.M. // J. Appl. Math. 2004. V. 1. P. 23–35.
  13. Ginibre J., Velo G. // Physica D. 1996. V. 95. P. 191–238.
  14. Ginibre J., Velo G. // Communs Math. Phys. 1997. V. 187. P. 45–79.
  15. Владимиров В.С. Уравнения математической физики. М., 1981.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian Academy of Sciences