Review of methods to retrieve sea ice parameters from satellite microwave radiometer data

Cover Page

Cite item

Full Text

Abstract

Sea ice monitoring using long-term data of satellite passive microwave instruments enables climate change estimates. These numerical estimates depend on the methods used for sea ice parameter retrievals. This work presents a review of methods to retrieve sea ice parameters from the data of satellite microwave radiometers. Physical modeling of the sea ice–ocean–atmosphere microwave radiation provides the means to identify the general sources of the retrieval errors and to classify the methods by used approach. The basics of the algorithms are formulated along with assumptions and approximations as well as the data used for the algorithm verification. Weather filters are considered to identify the areas of open water. A comparative analysis of method advantages and limitations is given related to sea ice concentration retrievals from such satellite instruments as the series of Special Sensor Microwave/Imager (SSM/I) and Advanced Microwave Scanning Radiometer (AMSR). A review of the basic satellite sea ice products based on SSM/I, AMSR-E and AMSR2 data is complemented by the list of the essential internet resources for operational and historical sea ice data.

About the authors

E. V. Zabolotskikh

Russian State Hydrometeorological University

Author for correspondence.
Email: liza@rshu.ru
Russian Federation, Malookhtinsky prosp., 98, St. Petersburg, 195196

References

  1. Vihma T. Effects of Arctic sea ice decline on weather and climate: A review // Surv. Geophys. 2014. V. 35, № 5. P. 1175–1214.
  2. Comiso J. C. Sea Ice Concentration and Extent // Encyclopedia of Remote Sensing / ed. Njoku E. G. New York, NY: Springer New York, 2014. P. 727–743.
  3. Teleti P.R., Luis A.J. Sea Ice Observations in Polar Regions: Evolution of Technologies in Remote Sensing // International Journal of Geosciences. 2013. V. 4, № 7. P. 1031–1050.
  4. Митник Л.М., Митник М.Л. Калибровка и валидация – необходимые составляющие микроволновых радиометрических измерений со спутников серии Метеор-М № 2 // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13, № 1. С. 95–104.
  5. Wentz F.J., Schabel M. Precise climate monitoring using complementary satellite data sets // Nature. 2000. V. 403, № 6768. P. 414–416.
  6. Иванов В. Алексеев В.А., Алексеева Т.А., Колдунов Н.В., Репина И.А., Смирнов А.В. Арктический ледяной покров становится сезонным? // Исследование Земли из Космоса. 2013. № 4. P. 50–65.
  7. Johannessen O.M., Kuzmina S.I., Bobylev L.P., Miles M.W. Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation // Tellus Dyn. Meteorol. Oceanogr. 2016. V. 68, № 1. P. 28 234. doi: 10.3402/tellusa.v68.28234.
  8. Comiso J.C., Hall D.K. Climate trends in the Arctic as observed from space: Climate trends in the Arctic as observed from space // Wiley Interdiscip. Rev. Clim. Change. 2014. V. 5, № 3. P. 389–409.
  9. Шалина Е.В., Бобылев Л.П. Изменение ледовых условий в Арктике согласно спутниковым наблюдениям // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14, № 6. С. 28–41.
  10. Comiso J.C., Parkinson C.L., Gersten R., Stock L. Accelerated decline in the Arctic sea ice cover // Geophys. Res. Lett. 2008. V. 35, № L01703. doi: 10.1029/2007GL031972.
  11. Kwok R., Cunningham G.F., Wensnahan M., Rigor I., Zwally H.J., Yi D. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008 // J. Geophys. Res. 2009. V. 114, № C7. doi: 10.1029/2009JC005312.
  12. Stroeve J.C., Serreze M.C., Holland M.M., Kay J.E., Malanik J., Barrett A.P. The Arctic’s rapidly shrinking sea ice cover: a research synthesis // Clim. Change. 2012. V. 110, № 3–4. P. 1005–1027.
  13. Смирнов В.Г. Спутниковые методы определения характеристик ледяного покрова морей. СПб., 2011. 240 c.
  14. Andersen S., Tonboe R., Kaleschke L., Heygster G., Pedersen L.T. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice // J. Geophys. Res. 2007. V. 112, № C8. doi: 10.1029/2006JC003543.
  15. Meier W.N. Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas // IEEE Trans. Geosci. Remote Sens. 2005. V. 43, № 6. P. 1324–1337.
  16. Смирнов В.Г., Бушуев А.В., Захваткина Н.Ю., Лощилов В.С. Спутниковый мониторинг морских льдов // Проблемы Арктики И Антарктики. 2010. Т. 85, № 2. С. 62–76.
  17. Ivanova N., Johannessen O.M., Pedersen L.T., Tonboe R.T. Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms // IEEE Trans. Geosci. Remote Sens. 2014. V. 52, № 11. P. 7233–7246.
  18. Фролов И.Е. Океанография и морской лед. Москва: Paulsen, 2011. 432 c.
  19. Тихонов В.В., Раев М.Д., Шарков Е.А., Боярский Д.А., Репина И.А., Комарова Н.Ю. Мониторинг морского льда полярных регионов с использованием спутниковой микроволновой радиометрии // Современные проблемы дистанционного зондирования Земли из космоса. 2015. Т. 12, № 5. С. 150–169.
  20. Тихонов В.В., Раев М.Д., Шарков Е.А., Боярский Д.А., Репина И.А., Комарова Н.Ю. Спутниковая микроволновая радиометрия морского льда полярных регионов. Обзор. // Исследование Земли из космоса. 2016. № 4. С. 65–84.
  21. Cavalieri D.J., Gloersen P., Campbell W.J. Determination of sea ice parameters with the Nimbus 7 SMMR // J. Geophys. Res. Atmospheres 1984–2012. 1984. V. 89, № D4. P. 5355–5369.
  22. Svendsen E., Kloster K., Farrelly B., Johannessen O.M., Johannessen J.A. et al. Norwegian remote sensing experiment: Evaluation of the nimbus 7 scanning multichannel microwave radiometer for sea ice research // J. Geophys. Res. Oceans 1978–2012. 1983. V. 88, № C5. P. 2781–2791.
  23. Успенский А.Б., Асмус В.В., Крамчанинова Е.К., Чернявский Г.М., Черный И.В. Абсолютная калибровка каналов атмосферного зондирования спутникового микроволнового радиометра МТВЗА-ГЯ // Исследование Земли из Космоса. 2016. № 5. С. 57–70.
  24. Гайфулин Д.Р., Цырульников М.Д., Успенский А.Б., Крамчанинова Е.К., Свиренко П.И., Горбунов М.Е. Численные эксперименты по использованию наблюдений микроволнового сенсора МТВЗА-ГЯ, установленного на борту российского метеоспутника «Метеор-М» № 2, в системе усвоения данных Гидрометцентра России // Метеорология и Гидрология. 2017. № 9. С. 36–47.
  25. Бухаров М.В. Распознавание свойств ледяного покрова Арктики и Антарктики по измерениям микроволновым радиометром МТВЗА-Гя // Метеорология И Гидрология. 2015. № 7. С. 56–65.
  26. Wentz F.J. SSM/I Version-7 Calibration Report, report number 011012 // Remote Sens. Syst. St. Rosa CA. 2013. P. 46.
  27. Comiso J.C. Characteristics of Arctic winter sea ice from satellite multispectral microwave observations // J. Geophys. Res. Oceans. 1986. V. 91, № C1. P. 975–994.
  28. Markus T., Cavalieri D.J. An enhancement of the NASA Team sea ice algorithm // IEEE Trans. on Geosci. Remote Sens. 2000. V. 38, № 3. P. 1387–1398.
  29. Svendsen E., Matzler C., Grenfell T.C. A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz // Int. J. Remote Sens. 1987. V. 8, № 10. P. 1479–1487.
  30. Kaleschke L., Lüpkes C., Vihma T., Haarpaintner J., Bochert A., Hartmann J., Heygster G. SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis // Can. J. Remote Sens. 2001. V. 27, № 5. P. 526–537.
  31. Smith D.M. Extraction of winter total sea-ice concentration in the Greenland and Barents Seas from SSM/I data // Remote Sens. 1996. V. 17, № 13. P. 2625–2646.
  32. Pedersen L.T. Improved spatial resolution of SSM/I products: Final Rep. № 145. Ed.: S. Sandven: Bergen, Norway: Nansen Environmental and Remote Sensing Center, 1998.
  33. Kern S. A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data // Int. J. Remote Sens. 2004. V. 25, № 21. P. 4555–4582.
  34. Kern S., Heygster G. Sea-ice concentration retrieval in the Antarctic based on the SSM/I 85.5 GHz polarization // Ann. Glaciol. 2001. V. 33, № 1. P. 109–114.
  35. Kawanishi T., Sezai T., Ito Y., Imaoka K., Takeshima T. et al. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies // IEEE Trans. Geosci. Remote Sens. 2003. V. 41, № 2. P. 184–194.
  36. Imaoka K., Kachi M., Kasahara M., Ito N., Nakagawa K., Oki T. Instrument performance and calibration of AMSR-E and AMSR2 // Int. Arch. Photogramm. Remote Sens. Spec. Inf. Sci. 2010. V. 38, № 8. P. 13–18.
  37. Comiso J. C, Kachi M., Kasahara M., Ito N., Nakagawa K., Oki T. Enhanced sea ice con centrations and ice extents from AMSR-E data // J. Remote Sens. Soc. Jpn. 2009. V. 29, № 1. P. 199–215.
  38. Comiso J.C., Cavalieri D.J., Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data // IEEE Trans. Geosci. Remote Sens. 2003. V. 41, № 2. P. 243–252.
  39. Spreen G., Kaleschke L., Heygster G. Sea ice remote sensing using AMSR-E 89–GHz channels // J. Geophys. Res. Oceans 1978–2012. 2008. V. 113, № C2. doi: 10.1029/2005JC003384.
  40. Ivanova N., Pedersen L.T., Tonboe R.T., Kern S., Heygster G., Lavergne T., Sørensen A. et al. Satellite passive microwave measurements of sea ice concentration: An optimal algorithm and challenges // Cryosphere. 2015. V. 9. P. 1797–1817.
  41. Beitsch A., Kern S., Kaleschke L. Comparison of SSM/I and AMSR-E Sea Ice Concentrations With ASPeCt Ship Observations Around Antarctica // IEEE Trans. Geosci. Remote Sens. 2015. V. 53, № 4. P. 1985–1996.
  42. Кутуза Б.Г., Яковлев О.И., Данилычев М.В. Спутниковый мониторинг Земли: Микроволновая радиометрия атмосферы и поверхности. М.: ЛЕНАНД, 2016. 336 с.
  43. Shokr M., Lambe A., Agnew T. A new algorithm (ECICE) to estimate ice concentration from remote sensing observations: An application to 85–GHz passive microwave data // IEEE Trans. Geosci. Remote Sens. 2008. V. 46, № 12. P. 4104–4121.
  44. Шарков Е.А. Радиотепловое дистанционное зондирование Земли. Физические основы. Т. 1. М.: ИКИ РАН, 2014. 544 с.
  45. Maslanik J A. Effects of weather on the retrieval of sea ice concentration and ice type from passive microwave data // Int. J. Remote Sens. 1992. V. 13, № 1. P. 37–54.
  46. Ramseier R.O. Sea ice validation, in: DMSP Special Sensor Microwave/Imager Calibration/Validation, edited by: Hollinger. J. P., Naval Research Laboratory, Washington, D. C., 1991.
  47. Tonboe R., Lavelle J. The EUMETSAT OSI SAF Sea Ice Concentration Algorithm. Algorithm Theoretical Basis Document. Ocean & Sea Ice SAF, 2016.
  48. Тихонов В.В., Репина И.А., Алексеева Т.А., Иванов В.В., Раев М.Д., Шарков Е.А., Боярский Д.А., Комарова Н.Ю. Восстановление сплоченности ледяного покрова Арктики по данным SSM/I // Современные проблемы дистанционного зондирования Земли из космоса. 2013. V. 10, № 5. P. 182–193.
  49. Тихонов В.В., Репина И.А., Раев М.Д., Шарков Е.А., Боярский Д.А., Комарова Н.Ю. Новый алгоритм восстановления сплоченности морского ледяного покрова по данным пассивного микроволнового зондирования // Исследования Земли из космоса. 2014. № 2. P. 35–43.
  50. Тихонов В.В., Репина И.А., Раев М.Д., Шарков Е.А., Боярский Д.А., Комарова Н.Ю. Комплексный алгоритм определения ледовых условий в полярных регионах по данным спутниковой микроволновой радиометрии (VASIA2) // Исследования Земли из космоса. 2015. № 2. P. 78–93.
  51. Репина И.А., Тихонов В.В., Алексеева Т.А., Иванов В.В., Раев М.Д., Шарков Е.А., Боярский Д.А., Комарова Н.Ю. Электродинамическая модель излучения арктического ледяного покрова для решения задач спутниковой микроволновой радиометрии // Исследования Земли Из Космоса. 2012. № 5. P. 29–36.
  52. Номенклатура ВМО по морскому льду. Терминология – Том 1 WMO/OMM/ВМО – No. 259. Издание 1970–2017.
  53. Carsey F.D. Microwave Remote Sensing of Sea Ice (Geophysical Monograph 68). Washington D. C.: American Geophysical Union, 1992. 462 p.
  54. Tonboe R.T. The simulated sea ice thermal microwave emission at window and sounding frequencies // Tellus A. 2010. V. 62, № 3. P. 333–344.
  55. Hwang B.J. Ehn J.K., Barber D.G., Galley R., Grenfell T.C. Investigations of newly formed sea ice in the Cape Bathurst polynya: 2. Microwave emission // J. Geophys. Res. Oceans. 2007. V. 112, № C5. doi: 10.1029/2006JC003703
  56. Ketchum R.D., Lohanick A.W. Passive microwave imagery of sea ice at 33 GHz // Remote Sens. Environ. 1980. V. 9, № 3. P. 211–223.
  57. Kwok R., Comiso J.C., Martin S., Drucker R. Ross Sea polynyas: Response of ice concentration retrievals to large areas of thin ice // J. Geophys. Res. Oceans. 2007. V. 112, № C12. doi: 10.1029/2006JC003967
  58. Mäkynen M., Similä M. Thin ice detection in the Barents and Kara Seas with AMSR-E and SSMIS radiometer data // IEEE Trans. Geosci. Remote Sens. 2015. V. 53, № 9. P. 5036–5053.
  59. Naoki K., Ukita J., Nishio F., Nakayama M., Comiso J. C., Gasiewski A. Thin sea ice thickness as inferred from passive microwave and in situ observations // J. Geophys. Res. Oceans. 2008. V. 113, № C2. doi: 10.1029/2007JC004270
  60. Shokr M., Asmus K., Agnew T.A. Microwave emission observations from artificial thin sea ice: the ice-tank experiment // IEEE Trans. Geosci. Remote Sens. 2009. V. 47, № 1. P. 325–338.
  61. Grenfell T.C., Cavalieri D.J., Comiso J.C., Drinkwater M.R., Onstott R. G., Rubinstein I. et al. Considerations for microwave remote sensing of thin sea ice // Microw. Remote Sens. Sea Ice. 1992. P. 291–301.
  62. Markus T., Cavalieri D.J., Gasiewski A., Klein M., Maslanik J.A., Powell D.C. et al. Microwave Signatures of Snow on Sea Ice: Observations // IEEE Trans. Geosci. Remote Sens. 2006. V. 44, № 11. P. 3081–3090.
  63. Barber D.G., Fung A.K., Grenfell T.C., Nghiem S.V., Onstott R.G., Lytle V.I., et al. The role of snow on microwave emission and scattering over first-year sea ice // IEEE Trans. Geosci. Remote Sens. 1998. V. 36, № 5. P. 1750–1763.
  64. Powell D.C., Markus T., Cavalieri D.J., Gasiewski A.J., Klein M., Maslanik J.A., et al. Microwave signatures of snow on sea ice: Modeling // IEEE Trans. Geosci. Remote Sens. 2006. V. 44, № 11. P. 3091–3102.
  65. Willmes S., Nicolaus M., Haas C. The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study // The Cryosphere. 2014. V. 8, № 3. P. 891–904.
  66. Wilheit T., Nordberg W., Blinn J., Campbell W., Edgerton A. Aircraft measurements of microwave emission from Arctic sea ice // Remote Sens. Environ. 1971. V. 2. P. 129–139.
  67. Troy B.E., Hollinger J.P., Lerner R.M., Wisler M.M. Measurement of the microwave properties of sea ice at 90 GHz and lower frequencies // J. Geophys. Res. Oceans. 1981. V. 86, № C5. P. 4283–4289.
  68. NORSEX Group. Norwegian remote sensing experiment in a marginal ice zone // Science. 1983. V. 220, № 4599. P. 781–787.
  69. Tucker W.B., Grenfell T.C., Onstott R.G., Perovich D.K., Gow A.J., Snuchman R.A., Sutherland L.L. Microwave and physical properties of sea ice in the winter Marginal Ice Zone // J. Geophys. Res. Oceans. 1991. V. 96, № C3. P. 4573–4587.
  70. Tucker W. B., Gow A. J., Weeks W. F. Physical properties of summer sea ice in the Fram Strait // J. Geophys. Res. Oceans. 1987. V. 92, № C7. P. 6787–6803.
  71. Grenfell T.C. Surface-based passive microwave observations of sea ice in the Bering and Greenland seas // IEEE Trans. Geosci. Remote Sens. 1986. № 3. P. 378–382.
  72. Matzler C., Ramseier R., Svendsen E. Polarization effects in seaice signatures // IEEE J. Ocean. Eng. 1984. V. 9, № 5. P. 333–338.
  73. Hewison T.J., English S.J. Airborne retrievals of snow and ice surface emissivity at millimeter wavelengths // IEEE Trans. Geosci. Remote Sens. 1999. V. 37, № 4. P. 1871–1879.
  74. Comiso J.C. Sea ice effective microwave emissivities from satellite passive microwave and infrared observations // J. Geophys. Res. Oceans 1978–2012. 1983. V. 88, № C12. P. 7686–7704.
  75. Mathew N., Heygster G., Melsheimer C. Surface emissivity of the Arctic sea ice at AMSR-E frequencies // IEEE Trans. Geosci. Remote Sens. 2009. V. 47, № 12. P. 4115–4124.
  76. Haggerty J.A., Curry J.A. Variability of sea ice emissivity estimated from airborne passive microwave measurements during FIRE SHEBA // J. Geophys. Res. Atmospheres. 2001. V. 106, № D14. P. 15265–15277.
  77. Liu Q., Weng F., English S.J. An Improved Fast Microwave Water Emissivity Model // IEEE Trans. Geosci. Remote Sens. 2011. V. 49, № 4. P. 1238–1250.
  78. Hollinger J.P. Passive microwave measurements of sea surface roughness // IEEE Trans. Geosci. Electron. 1971. V. 9, № 3. P. 165–169.
  79. Stogryn A. Equations for calculating the dielectric constant of saline water // IEEE Trans. Microw. Theory Tech. 1971. V. 19, № 8. P. 733–736.
  80. Stogryn A. The apparent temperature of the sea at microwave frequencies // IEEE Trans. Antennas Propag. 1967. V. 15, № 2. P. 278–286.
  81. Meissner T., Wentz F.J. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles // IEEE Trans. Geosci. Remote Sens. 2012. V. 50, № 8. P. 3004–3026.
  82. Raizer V. Macroscopic Foam–Spray Models for Ocean Microwave Radiometry // IEEE Trans. Geosci. Remote Sens. 2007. V. 45, № 10. P. 3138–3144.
  83. Anguelova M.D., Gaiser P.W. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity // Remote Sens. 2012. V. 4, № 5. P. 1162–1189.
  84. Anguelova M.D., Gaiser P.W. Microwave emissivity of sea foam layers with vertically inhomogeneous dielectric properties // Remote Sens. Environ. 2013. V. 139. P. 81–96.
  85. Reul N., Chapron B. A model of sea-foam thickness distribution for passive microwave remote sensing applications // J. Geophys. Res. Oceans. 2003. V. 108, № C10. P. 19.1–19.14.
  86. Wei E.-B. Effective medium approximation model of sea foam layer microwave emissivity of a vertical profile // Int. J. Remote Sens. 2013. V. 34, № 4. P. 1180–1193.
  87. Aziz M.A., Reising S.C., Asher W.E., Rose L.A., Gaiser P.W., Horgan K.A. Effects of air-sea interaction parameters on ocean surface microwave emission at 10 and 37 GHz // IEEE Trans. Geosci. Remote Sens. 2005. V. 43, № 8. P. 1763–1774.
  88. Rosenkranz P.W. Rough-sea microwave emissivities measured with the SSM/I // IEEE Trans. Geosci. Remote Sens. 1992. V. 30, № 5. P. 1081–1085.
  89. Shibata A. Features of ocean microwave emission changed by wind at 6 GHz // J. Oceanogr. 2006. V. 62, № 3. P. 321–330.
  90. Степаненко В.Д., Щукин Г.Г., Бобылев Л.П., Матросов С.Ю. Радиотеплолокация в метеорологии. Гидрометеоиздат. Ленинград, 1987. 284 c.
  91. Синькевич А.А., Степаненко В.Д., Довгалюк Ю.А. Вопросы физики облаков. 50 лет отделу физики облаков ГГО. Санкт-Петербург: Астерион, 2008. 513 c.
  92. Liebe H.J., Layton D.H. Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling: NTIA Rep. 87–24. Nat. Tech. Inf. Service Boulder, CO, 1987.
  93. Meissner T., Wentz F.J. The complex dielectric constant of pure and sea water from microwave satellite observations // IEEE Trans. Geosci. Remote Sens. 2004. V. 42, № 9. P. 1836–1849.
  94. Chapron B., Bingham A., Collard F., Donlon C., Johannessen J.A., Piolle J.F., Reul N. Ocean remote sensing data integration-examples and outlook // Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. ESA Publication WPP-306, 2010.
  95. Li M., Liu J., Wang Z., Wang H., Zhang Z., Zhang L., Yang Q. Assessment of Sea Surface Wind from NWP Reanalyses and Satellites in the Southern Ocean // J. Atmospheric Ocean. Technol. 2013. V. 30, № 8. P. 1842–1853.
  96. Zabolotskikh E.V., Mitnik L.M., Chapron B. GCOM-W1 AMSR2 and MetOp-A ASCAT wind
  97. speeds for the extratropical cyclones over the North Atlantic // Remote Sens. Environ. 2014. V. 147. P. 89–98.
  98. Zabolotskikh E.V. Numerical simulation of AMSR2 high frequency channel measurements over sea ice and sea water surfaces // Proc. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2016. P. 7686–7689.
  99. Meier W., Notz D. A note on the accuracy and reliability of satellite-derived passive microwave estimates of sea-ice extent. Tromsø, Norway: Clic Arctic sea ice working group, Consensus document, CLIC International Project Office, 2010. P. 4.
  100. Agnew T., Howell S. The use of operational ice charts for evaluating passive microwave ice concentration data // Atmosphere-Ocean. 2003. V. 41, № 4. P. 317–331.
  101. Knuth M.A., Ackley S.F. Summer and early-fall Sea-ice concentration in the Ross Sea: comparison of in Situ ASPeCt observations and satellite passive microwave estimates // Ann. Glaciol. 2006. V. 44. P. 303–309.
  102. Oelke C. Atmospheric signatures in sea-ice concentration estimates from passive microwaves: modelled and observed // Int. J. Remote Sens. 1997. V. 18, № 5. P. 1113–1136.
  103. Comiso J.C., Steffen K. Studies of Antarctic sea ice concentrations from satellite data and their applications // J. Geophys. Res. Oceans. 2001. V. 106, № C12. P. 31361–31385.
  104. Emery W.J., Radebaugh M., Fowler C.W., Cavalieri D., Steffen K. A comparison of sea ice parameters computed from advanced very high resolution radiometer and Landsat satellite imagery and from airborne passive microwave radiometry // J. Geophys. Res. Oceans. 1991. V. 96, № C12. P. 22075– 22085.
  105. Steffen K., Schweiger A.J. A multisensor approach to sea ice classification for the validation of DMSP-SSM/I passive microwave derived sea ice products // Photogr. Engin. Rem. Sens. 1990. V. 56. P. 75–82.
  106. Zibordi G., Van Woert M., Meloni G.P., Canossi I. Intercomparisons of sea ice concentration from SSM/I and AVHRR data of the Ross Sea // Remote Sens. Environ. 1995. V. 53, № 3. P. 145–152.
  107. Drüe C., Heinemann G. High-resolution maps of the sea-ice concentration from MODIS satellite data // Geophys. Res. Lett. 2004. V. 31, № 20. doi: 10.1029/2004GL020808.
  108. Karvonen J. A sea ice concentration estimation algorithm utilizing radiometer and SAR data // The Cryosphere. 2014. V. 8, № 5. P. 1639–1650.
  109. Dokken S.T., Hakansson B., Askne J. Inter-comparison of Arctic sea ice concentration using RADARSAT, ERS, SSM/I and in-situ data // Can. J. Remote Sens. 2000. V. 26, № 6. P. 521–536.
  110. Zakhvatkina N., Korosov A., Muckenhuber S., Sandven S., Babiker M. Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images // The Cryosphere. 2017. V. 11, № 1. P. 33–46.
  111. Comiso J.C., Cavalieri D.J., Parkinson C.L., Gloersen P. Passive microwave algorithms for sea ice concentration: A comparison of two techniques // Remote Sens. Environ. 1997. V. 60, № 3. P. 357–384.
  112. Belchansky G.I., Douglas D.C. Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data // Remote Sens. Environ. 2002. V. 81, № 1. P. 67–81.
  113. Hanna E., Bamber J. Derivation and optimization of a new Antarctic sea-ice record // Int. J. Remote Sens. 2001. V. 22, № 1. P. 113–139.
  114. Kwok R. Sea ice concentration estimates from satellite passive microwave radiometry and openings from SAR ice motion // Geophys. Res. Lett. 2002. V. 29, № 9. doi: 10.1029/2002GL014787.
  115. Swift C.T., Fedor L.S., Ramseier R.O. An algorithm to measure sea ice concentration with microwave radiometers // J. Geophys. Res. Oceans. 1985. V. 90, № C1. P. 1087–1099.
  116. Comiso J. C. SSM/I concentrations using the Bootstrap algorithm.: 1380. NASA Refer. Publ., 1995. P. 50.
  117. Pedersen L.T. Retrieval of sea ice concentration by means of microwave radiometry // Electromagnetics Rep. 1991. 154p.
  118. Parkinson C.L., Comiso J.C., Zwally H.J. Nimbus-5 ESMR Polar Gridded Sea Ice Concentrations, 1978–2011: edited by: Meier, W. and Stroeve, J. NASA DAAC at the National Snow and Ice Data Center, NASA, Boulder, Colorado, USA, 2004.
  119. Comiso J.C., Gersten R.A., Stock L.V., Turner J., Perez G.J., Cho K. Positive trend in the Antarctic sea ice cover and associated changes in surface temperature // J. Clim. 2017. V. 30, № 6. P. 2251–2267.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies