Spatio-temporal variation of outgoing thermal radiation of the earth by space-based IR spectrometer IKFS‑2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Current Earth climate changes are caused by the violation of the planet’s radiation balance (RB). In this study the changes of the one of RB’s components – yearly and monthly averaged global and regional outgoing thermal radiation of Earth or the Earth own radiation (EOR) in a spectral range 660–1300 cm-1 for 2015–2022 by IR Fourier-spectrometer IKFS-2 onboard the “Meteor-M” No2 satellite – is analyzed.

It is shown that EOR on a global scale in a range 660–1300 cm-1 on average decreased during the period of 2015–2022. Mean integral radiation in the same wave-lenght range decreased by ~0.5 W m-2 during 2015–2022. The most pronounced decrease of EOR was found in tropics, when the least pronounced – on polar latitudes. Besides, a negative trend of the integral EOR was found in tropics (up to 0.95–1.3 ± 0.1 W m-2 for the 8 years) with relatively high coefficient of determination (0.46–0.57). At the same time, there is no pronounced trend of EOR on the polar and middle latitudes.

Full Text

Restricted Access

About the authors

Yu. M. Timofeev

Saint Petersburg State University

Email: akulishe95@mail.ru
Russian Federation, Saint Petersburg

G. M. Nerobelov

Saint Petersburg State University; Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences; Russian State Hydrometeorological University

Author for correspondence.
Email: akulishe95@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

D. A. Kozlov

Keldysh Research Center

Email: akulishe95@mail.ru
Russian Federation, Moscow

I. S. Cherkashin

Keldysh Research Center

Email: akulishe95@mail.ru
Russian Federation, Moscow

P. M. Nerobelov

Saint Petersburg State University; Peter the Great Saint Petersburg Polytechnic University

Email: akulishe95@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg

A. N. Rublev

Planeta Scientific Research Centre (European Branch)

Email: akulishe95@mail.ru
Russian Federation, Moscow

A. B. Uspensky

Planeta Scientific Research Centre (European Branch)

Email: akulishe95@mail.ru
Russian Federation, Moscow

Yu. V. Kiseleva

Planeta Scientific Research Centre (European Branch)

Email: akulishe95@mail.ru
Russian Federation, Moscow

References

  1. Акентьева Е. М., Александров Е. И., Алексеев Г. В., Анисимов О. А., Балонишникова Ж. А., Булыгина О. Н., Георгиевский В. Ю., Докукин М. Д., Ефимов С. В., Иванов Н. Е., Калов Х. М., Катцов В. М., Киселев А. А., Клепиков А. В., Клюева М. В., Кобышева Н. В., Оганесян В. В., Павлова В. Н., Павлова Т. В., Постнов А. А., Стадник В. В., Солдатенко С. А., Хлебникова Е. И., Шалыгин А. Л., Школьник И. М. Доклад о климатических рисках на территории Российской Федерации. Санкт-Петербург, 2017. 106 с.
  2. Будыко М. И. Изменение климата. Л.: Гидрометеоиздат, 1974. 38 с.
  3. Головин Ю. М., Завелевич Ф. С., Никулин А. Г., Козлов Д. А., Монахов Д. О., Козлов И. А., Архипов С. А., Целиков В. А., Романовский А. С. Бортовые инфракрасные Фурье-спектрометры для температурно-влажностного зондирования атмосферы Земли // Исслед. Земли из космоса. 2013. № 6. С. 25–37.
  4. Завелевич Ф. С., Головин Ю. М., Десятов А. В., Козлов Д. А., Мацицкий Ю. П., Никулин А. Г., Травников Р. И., Романовский А. С., Архипов С. А., Целиков В. А. Технологический образец бортового инфракрасного Фурье-спектрометра ИКФС-2 для температурного и влажностного зондирования атмосферы Земли // Труды Всероссийской конференции “Современные проблемы дистанционного зондирования Земли из космоса”. М., ИКИ РАН. 10–14 ноября 2008 г. Сб. научных статей, изд. “Азбука-2000”, 2009. Т. 1. № 6. С. 259–266.
  5. Катцев В. М., Семенов С. М. (научные руководители работ по подготовке доклада). Второй оценочный доклад Росгидромета об изменениях климата и их последствиях на территории Российской Федерации. Ижевск: Типография ИП Пермякова С. А., 2014. 1009 с.
  6. Тимофеев Ю. М., Васильев А. В. Теоретические основы атмосферной оптики. СПб.: Наука, 2003. 474 с.
  7. Тимофеев Ю. М., Поляков А. В., Козлов Д. А., Завелевич Ф. С., Головин Ю. М., Делер В., Эртель Д., Шпенкух Д. Сопоставление спектров уходящего теплового ИК излучения разных лет // Исследование Земли из космоса. 2018. № 5. С. 65–72.
  8. Успенский А. Б., Рублев А. Н., Козлов Д. А., Голомолзин В. В., Киселева Ю. В., Козлов И. А., Никулин А. Г. Мониторинг основных климатических переменных атмосферы по данным спутникового ИК-зондировщика ИКФС-2 // Метеорология и гидрология. 2022. T. 11. С. 5–18.
  9. Успенский А. Б., Тимофеев Ю.М, Козлов Д. А., Черный И. В. Развитие методов и средств дистанционного температурно-влажностного зондирования земной атмосферы // Метеорология и гидрология. 2021. T. 12. С. 33–44.
  10. Anderson J. G., Dykema, R. M. Goody, H. Hu, D. B. Kirk-Davidoff. Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space // Journal of Quantitative Spectroscopy & Radiative Transfer. 2004. V. 85. P. 367–383.
  11. Bernet L., von Clarmann T., Godin-Beekmann S., Ancellet G., Maillard Barras E., Stübi R., Steinbrecht W., Kämpfer N., Hocke K. Ground-based ozone profiles over central Europe: Incorporating anomalous observations into the analysis of stratospheric ozone trends // Atmos. Chem. Phys. 2019. V. 19. P. 4289–4309.
  12. Brindley H. E., Bantges R. J. The Spectral Signature of Recent Climate Change // Curr Clim Change Rep. 2016. V. 2. P. 112–126.
  13. Brindley H., Bantges R., Russell J., Murray J., Dancel C., Belotti C., Harries J. Spectral signatures of earth’s climate variability over 5 years from IASI // J. Clim. 2015. V. 28. P. 1649–1660.
  14. Brindley H. E., Harries J. E. Observations of the infrared outgoing spectrum of the Earth from space: The effects of temporal and spatial sampling // J. Climate. 2003. V. 16 (22). P. 3820–3833.
  15. Ceppiand P., Nowack P. Observational evidence that cloud feedback amplifies global warming // Earth, Atmospheric, and Planetary Sciences. 2021. 118 (30).
  16. Dewitte S. and Clerbaux N. Decadal Changes of Earth’s Outgoing Longwave Radiation // Remote Sensing. 2018. V. 10 (10). P. 1–7.
  17. Dewitte, S., Clerbaux, N. Measurement of the Earth Radiation Budget at the top of atmosphere – A review // Remote Sens. 2017. V. 9(11), P. 1–13.
  18. Dübal, H.-R., Vahrenholt, F. Radiative Energy Flux Variation from 2001–2020 // Atmosphere. 2021. V. 12 (10). P. 1–19.
  19. Forster P., Storelvmo T., Armour K., Collins W., Dufresne J.-L., Frame D., Lunt D. J., Mauritsen T., Palmer M. D., Watanabe M., Wild M., Zhang H. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021. P. 923–1054.
  20. Harries J. E., Brindley H. E., Sagoo P. J., Bantges R. J. Increases in greenhouse forcing from the Earth’s outgoing longwave spectra in 1970 and 1997 // Nature. 2001. V. 410. P. 355–357.
  21. Lee H., J. Romero (eds.). IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 2023. P. 36 (in press).
  22. Loeb N. G., Johnson G. C., Thorsen T. J., Lyman J. M., Rose F. G., Kato S. Satellite and ocean data reveal marked increase in Earth’s heating rate // Geophysical Research Letters. 2021. V. 48. P. 1–8.
  23. Loeb N. G., Manalo-Smith N., Su W., Thomas M. S., Thomas Su. CERES Top-of-Atmosphere Earth Radiation Budget Climate Data Record: Accounting for in-Orbit Changes in Instrument Calibration // Remote Sens. 2016. V. 8. P. 1–14.
  24. Phulpin T., Blumstein D., Prel F., Tournier B., Prunet P., Schlüssel P. Applications of IASI on MetOp-A: first results and illustration of potential use for meteorology, climate monitoring and atmospheric chemistry. Proceedings of The International Society for Optical Engineering, San Diego, California, United States. September 2007. P. 1–12.
  25. Raghuraman S. P., Paynter D., Ramaswamy V. Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance // Nat Commun, 2021. V. 12. P. 1–10.
  26. Shunlin L., Dongdong W., Tao H., Yueyun Y. Remote sensing of earth’s energy budget: synthesis and review // International Journal of Digital Earth. 2019. № 7. P. 737–780.
  27. Susskind J., Molnar G., Iredell L., Loeb N. G. Interannual variability of outgoing longwave radiation as observed by AIRS and CERES // J. Geophys. Res. 2012. V. 117. P. 1–18.
  28. Timofeyev Yu.M., Uspensky A. B., Zavelevich F. S., Polyakov A. V., Virolainen Y. A., Rublev A. N., Kukharsky A. V., Kiseleva J. V., Kozlov D. A., Kozlov I. A., Nikulin A. G., Pyatkin V. P., Rusin E. V. Hyperspectral infrared atmospheric sounder IKFS-2 on “Meteor-M” No. 2 – Four years in orbit // Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. V. 238. P. 1–19.
  29. Wang L., Chen Y. Inter-comparing S-NPP and NOAA-20 CrIS toward measurement consistency and climate data records // IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019. V. 12. P. 2024–2031.
  30. Wang T., Zhou L., Tan C., Divakarla M., Pryor K., Warner J., Wei Z., Goldberg M., Nalli N. R. Validation of Near-Real-Time NOAA-20 CrIS Outgoing Longwave Radiation with Multi-Satellite Datasets on Broad Timescales // Remote Sens. 2021. V. 13 (19). P. 1–14.
  31. Whitburn S., Clarisse L., Bouillon M., Safieddine S., George M., Dewitte S., De Longueville H., Coheur P.-F., Clerbaux C. Trends in spectrally resolved outgoing longwave radiation from 10 years of satellite measurements // Climate and Atmospheric Science. 2021. V. 4. P. 1–8.
  32. Whitburn S., Clarisse L., Crapeau M., August T., Hultberg T., Coheur P. F., Clerbaux C. A CO2-independent cloud mask from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications // Atmos. Meas. Tech. 2022. V. 15. P. 6653–6668.
  33. Wielicki B., Barkstom B. R., Harrison E. F., Lee R. B., III, Smith G. L., Cooper J. Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment // Bull. Am. Meteorol. Soc. 1996. V. 77. P. 853–868.
  34. Zhang K., Goldberg M. D., Sun F., Zhou L., Wolf W. W., Tan C., Liu Q. Estimation of near-real-time outgoing longwave radiation from Cross-Track Infrared Sounder (CrIS) radiance measurements // J. Atmos. Ocean. Technol. 2017. V. 34. P. 643–655.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Difference spectra of the annual mean global PPE in the 660-1300 cm-1 range for 2016-2022 relative to 2015 based on ICFS-2 measurements

Download (491KB)
3. Fig. 2. Temporal change of the annual average global integral PPE in the 660-1300 cm-1 spectral region for 2016-2022 relative to 2015 based on ICFS-2 measurements

Download (64KB)
4. Fig. 3. Temporal change of the spectrum of the Earth's mean global NF in the spectral region 660-1300 cm-1 for 2016-2022 relative to 2015

Download (502KB)
5. Fig. 4. Average 2015-2022 PPE spectra in the 660-1300 cm-1 range for six latitude zones based on ICFS-2 measurements

Download (371KB)
6. Fig. 5. Difference spectra of annual mean PPE for 2016-2022 relative to 2015 in the 660-1300 cm-1 range in the northern (left) and southern (right) hemispheres for six latitude zones (90°N-90°S in 30° increments)

Download (813KB)
7. Fig. 6. Average NMT difference spectra for 2016-2022 compared to 2015 in the 660-1300 cm-1 range in the northern (left) and southern (right) hemispheres of the Earth for six latitude zones (90°N-90°S in 30° increments)

Download (622KB)
8. Fig. 7. Temporal changes of annual mean integrated PPE in the 660-1300 cm-1 spectral region for 2016-2022 relative to 2015 in the northern (a) and southern (b) hemispheres from ICFS-2 data

Download (155KB)
9. Fig. 8. Time series of global mean monthly integrated PPE based on ICFS-2 data and MLR model for 2015-2022

Download (250KB)

Copyright (c) 2024 Russian Academy of Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.