On the рossibility of multichannel optical backscattering sondes for joint balloon and lidar studies of the aerosol composition of the middle atmosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aerosol backscattering sondes in the practice of aerological sounding, along with lidar observations, are used at night to study and monitor polar stratospheric clouds, tropospheric and stratospheric aerosol, cirrus clouds, pyroconvection, volcanic aerosol, as well as to verify remote methods and means of ground-based and satellite-based aerosol observations. For aerosol sondes, a simple two-wave measurement technique is used, which makes it possible to diagnose changes in aerosol composition by color index. The possibilities of the two-wave technique have limitations, which are discussed in this article. Aerological sounding combined with lidar observations expands the wavelength range for multi-wavelength studies, and direct measurements of atmospheric temperature increase the accuracy of aerosol sensing. The paper considers the application of 3 or more wavelenght techniques. Data from probe measurements using wavelengths of 470, 528, 850 and 940 nm and lidar sensing at wavelengths of 355 and 532 nm are presented.

Full Text

Restricted Access

About the authors

N. V. Balugin

Central Aerological observatory

Email: v_yushkov@mail.ru
Russian Federation, 14170, Dolgoprudny, Moscow Region, Pervomayskaya str., 3

B. A. Fomin

Central Aerological observatory

Email: v_yushkov@mail.ru
Russian Federation, 14170, Dolgoprudny, Moscow Region, Pervomayskaya str., 3

V. А. Yushkov

Central Aerological observatory

Author for correspondence.
Email: v_yushkov@mail.ru
Russian Federation, 14170, Dolgoprudny, Moscow Region, Pervomayskaya str., 3

V. N. Marichev

Zuev Institute of Atmospheric Optics RAS SB

Email: v_yushkov@mail.ru
Russian Federation, 634055, Tomsk, Ak. Zueva place, 1

D. A. Bochkovskyi

Zuev Institute of Atmospheric Optics RAS SB

Email: v_yushkov@mail.ru
Russian Federation, 634055, Tomsk, Ak. Zueva place, 1

References

  1. Балугин Н.В., Фомин Б.А., Юшков В.А. Оптический зонд обратного рассеяния для баллонных аэрологических измерений // Изв. РАН. Физика атмосферы и океана. 2022. Т. 58. № 3. С. 1–8.
  2. Балугин Н.В., Фомин Б.А., Лыков А.Д., Юшков В.А. Фомин Б.А. Оценка воздействия стратосферного аэрозоля на радиационный баланс стратосферы по данным оптического баллонного зонда обратного рассеяния и радиационного моделирования // Метеорология и гидрология. 2022. № 10. С. 121–129.
  3. Г. ван де Хюлст. Рассеяние света малыми частицами. М.: Издательство иностранной литературы, 1961. 536 с.
  4. Зуев В.В. Лидарный контроль стратосферы. Новосибирск: Наука, 2004. 306 с.
  5. Маричев В.Н., Бочковский Д.А. Лидарный комплекс малой станции высотного зондирования атмосферы ИОА СО РАН // Оптика атмосферы и океана. 2020. Т. 33. № 5. С. 399–406. https://doi.org/10.15372/AOO20200510
  6. Маричев В.Н., Матвиенко Г.Г., Юшков В.А., Балугин Н.В., Бочковский Д.А. Лидарно-баллонный эксперимент по исследованию стратосферного аэрозоля для климатических наблюдений и диагностических задач // Метеорология и гидрология. 2022. № 11. С. 41–47.
  7. Brabec M., Wienhold F.G., Luo B.P., Vomel H., Immler F., Steiner P., Hausammann E., Weers U., Peter T. Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modeling // Atmos. Chem. Phys. 2012. № 12. P. 9135–9148. https://doi.org/10.5194/acp-12-9135-2012
  8. Blake D.F., Kato K. Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere // J. Geophys. Res. 1995. V. 100. № D4. P. 7195–7202.
  9. Fomin B.A., Mazin I.P. Model for an investigation of radiative transfer in cloudy atmosphere // Atmospheric Research. 1998. V. 47–48. P. 127–153.
  10. Rosen J.M., Kjome N.T. Backscattersonde: a new instrument for atmospheric aerosol research. APPLIED OPTICS. 1991. V. 30. № 12. Р 1552–1561.
  11. Zhang Y. et al. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere // Nature geoscience, advance online publication, published online: 22 may 2017. https://doi.org/10.1038/ngeo2960WCP-112
  12. A preliminary cloudless standard atmosphere for radiation calculation // World Climate Research Program. WMO/TD, 1986. 66 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of the lidar-balloon experiment in Tomsk on the night of January 27-28, 2022 in the form of vertical profiles of R – the ratio of the values ​​of the total backscattering coefficients to the value of molecular scattering for different wavelengths (see text).

Download (318KB)
3. Fig. 2. Ci index for pairs of wavelengths (470, 940) nm, (470, 850) nm and (470, 528) nm.

Download (87KB)
4. Fig. 3. Backscattering coefficients (in relative units) for climatic aerosols “SOOT” (soot), “H2SO4” (sulfuric acid) and “DUST” (dust) aerosols based on the results of calculations using Mie theory and data from [WCP-112, 1986].

Download (93KB)

Note

1The article is based on the oral report presented at the IV All-Russian Conference with international participation “Turbulence, atmospheric dynamics and climate”, dedicated to the memory of academician A.M. Obuhova (Moscow, November 22–24, 2022).


Copyright (c) 2024 Russian Academy of Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.