Vertical structure of currents in the western Weddell Sea

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The Southern Ocean plays a key role in the global circulation of the World Ocean. The Weddell Gyre, being one of two gyres that determine the large-scale dynamics of the Southern Ocean, makes a significant contribution to the global thermohaline circulation. In this regard, the study of the dynamics and structure of waters in the Weddell Sea seems very relevant for improving our understanding of the processes occurring in the World Ocean. In this work, based on an array of data on current velocities from moorings collected from an open source (Pangaea), the vertical structure of currents on a slope in the western part of the Weddell Sea (northwestern and southern parts) was studied. The main result is the intensification of the current in the bottom layer identified, based on the mean velocities calculated over the period of measurement, which, apparently, is a characteristic feature of the Weddell Gyre for both its western and southern branches. An increase in velocities in the bottom layer at individual moorings previously noted in separate works was confirmed and shown based on an array of data on current velocities from 108 sensors at 37 moorings on the continental slope in the northwestern and southern parts of the Weddell Sea.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

R. Mukhametyanov

Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: rinat0233@mail.ru
Ресей, Nakhimovskii pr., 36, Moscow, 119997; Dolgoprudny, Institutskii per. 9., 141700

Әдебиет тізімі

  1. Антипов Н. Н., Багрянцев Н. В., Данилов А. И., Клепиков А. В. Зимние исследования антарктической зоны Южного океана (к 25-летию организации советско-российско-американской дрейфующей станции «Уэдделл –1») // Океанология. 2019. Т. 59. № 2. С. 308–310.
  2. Дианский Н. А., Морозов Е. Г., Фомин В. В., Фрей Д. И. Распространение загрязнений в Норвежском море от придонного источника // Известия РАН. Физика атмосферы и океана. 2021. T. 57. № 2. С. 218–230. https://doi.org/10.31857/S0002351521020048
  3. Клепиков В. В. Гидрология моря Уэдделла // Труды Сов. Антарктической Экспедиции 1963. Т. 17. С. 45–93.
  4. Darelius E., Fer I., Janout M. A., Daae K., Steiger N. Observations of the shelf break current in the southern Weddell Sea: seasonal variability and mean state // ESS Open Archive. 2023. https://doi.org/10.22541/essoar.169945617.72057337/v1
  5. Fahrbach E., Rohardt G., Krause G. The Antarctic coastal current in the southeastern Weddell Sea // Polar Biology. 1992. V. 12. P. 171–182.
  6. Fahrbach E., Rohardt G., Scheele N., Schroder M., Strass V., Wisotzki A. Formation and discharge of deep and bottom water in the northwestern Weddell sea // Journal of Marine Research. 1995. V. 53. № 4. P. 515–538.
  7. Frey D., Krechik V., Gordey A., Gladyshev S., Churin D., Drozd I., Osadchiev A., Kashin S., Morozov E. and Smirnova D. Austral summer circulation in the Bransfield Strait based on SADCP measurements and satellite altimetry // Front. Mar. Sci. V. 10:1111541. https://doi.org/10.3389/fmars.2023.1111541
  8. Frey D. I., Krechik V. A., Morozov E. G., Drozd I. D., Gordey A. S., Latushkin A. A., Mekhova O. S., Mukhametianov R. Z., Murzina S. A., Ostroumova S. A., Ponomarev V. I., Salyuk P. A., Smirnova D. A., Shutov S. A., Zuev O. A. Water Exchange between Deep Basins of the Bransfield Strait // Water. 2022. V. 14. P. 3193. https://doi.org/10.3390/w14203193
  9. Jullion L., Naveira Garabato A. C., Bacon S., Meredith M. P., Brown P. J., Torres-Valdes S., Speer K. G., Holland P. R., Dong J., Bakker D., Hoppema M., Loose B., Venables H. J., Jenkins W. J., Messias M.-J., Fahrbach E. The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation // Journal of Geophysical Research. 2014. V. 119. P. 3357–3377. https://doi.org/10.1002/2013JC⁰09725
  10. Nicholls K. W., Østerhus S., Makinson K., Gammelsrød T., Fahrbach E. Ice-Ocean Processes over the Continental Shelf of the Southern Weddell Sea, Antarctica: A Review // Reviews of Geophysics. 2009. V. 47. P. 1–23.https://doi.org/10.1029/ 2007RG000250
  11. Orsi A. H., Jacobs S. S., Gordon A. L., Visbeck M. Cooling and ventilating the abyssal ocean // Geophysical Research Letters. 2001. V. 28. P. 2923–2926.
  12. Orsi A. H., Nowlin W. D., Whitworth T. III. On the circulation and stratification of the Weddell Gyre // Deep-Sea Research Part I. 1993. V. 40. P. 169–203.
  13. https://doi.org/10.1016/0967–0637(93)90060-G
  14. Pangaea. Data Publisher for Earth & Environmental Science. URL: https://www.pangaea.de/?t=Oceans.
  15. Schlitzer R. Ocean Data View. https://odv.awi.de, 2022.
  16. Thompson F., Heywood K. Frontal structure and transport in the northwestern Weddell Sea // Deep-Sea Research Part I. 2008. V. 55. P. 1229–1251. https://doi.org/10.1016/j.dsr.2008.06.001
  17. Vernet M., Geibert W., Hoppema M., Brown P. J., Haas C., Hellmer H. H., Jokat W., Jullion L., Mazloff M., Bakker D. C.E., Brearley J. A., Croot P., Hatterman T., Hauck J., Hillenbrand C.-D., Hoppe C. J.M., Huhn O., Koch B. P., Lechtenfel O. J., Meredith M. P., Naveira Garabato A. C., Nöthig E.-M., Peeken I., Rutgers van der Loeff M. M., Schmidtko S., Schröder M., Strass V. H., Torres-Valdes S., Verdy A. The Weddell Gyre, Southern Ocean: present knowledge and future challenges // Reviews of Geophysics. 2019. V. 57. № 3. P. 623–708.
  18. Von Gyldenfeldt A.-B., Farhbach E., Garca M. A., Schröder M. Flow variability at the tip of the Antarctic Peninsula // Deep-Sea Research Part II. 2002. V. 49. P. 4743–4766.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Map of the locations of the autonomous moored buoy stations in the Weddell Sea considered in this paper (left). Stations in the northwestern part of the Weddell Sea are outlined in blue, and stations in the southern part are outlined in green. Also on the right is a map of the locations of all collected stations, including those not accepted for analysis. The 500 m and 3500 m isobaths are marked with thicker lines.

Жүктеу (458KB)
3. Fig. 2. Histogram showing the total duration of measurements, expressed in days, for all sensors from autonomous buoy installations depending on the year of measurement.

Жүктеу (143KB)
4. Fig. 3. Histogram showing the total measurement duration for all sensors (from all moored buoy stations), expressed in days, depending on the day of the year.

Жүктеу (121KB)
5. Fig. 4. Distribution of sensors from autonomous moored buoy stations by their placement horizons. The x-axis shows the depth of the sensor, and the y-axis shows their number.

Жүктеу (101KB)
6. Fig. 5. Distribution of the number of sensors by the duration of their operation at autonomous stations, expressed in months.

Жүктеу (238KB)
7. Fig. 6. Velocity magnitude from all available sensors at the AWI207–10 autonomous moored buoy station for 2018. The sensor placement horizons are as follows: 245 m, 750 m, 2143 m, 2350 m. The station installation depth is 2502 m. The red line marks the average sensor velocity for the presented period. The corresponding signatures of the average velocities are given.

Жүктеу (780KB)
8. Fig. 7. Distribution of averaged velocity values ​​over the measurement period: on the left for individual sensors at buoy installations, on the right for buoy stations as a whole, i.e. averaged across sensors.

Жүктеу (179KB)
9. Fig. 8. The y-axis shows the height above the seabed, and the x-axis shows the average velocity for the measurement period at a separate sensor. The color shows the sensor placement horizon. The red line marks the height of 200 m above the bottom.

Жүктеу (134KB)
10. Fig. 9. Map with the indicated averaged velocity values ​​over the measurement period for the ABS sensors related to the conditional upper layer (shown in blue in figures a and c) with depths of up to 0.75 H, where H is the station installation depth, and for the sensors located in the bottom layer (shown in red in figures b and d) with depths from 0.75 H (the lower 0.25 H of the water column). Both the northwestern part of the Weddell Sea (a and b) and the southern part (c and d) are shown. A diagram of the area is shown at the bottom right, with the northwestern part of the Weddell Sea marked in blue and the southern part in green.

Жүктеу (267KB)
11. Fig. 10. Distribution of average velocities for the measurement period on sensors separately for the upper layer at 0.75 H and separately for the bottom layer at 0.25 H, where H is the depth of the autonomous buoy station.

Жүктеу (112KB)
12. Fig. 11. Relative velocities on sensors depending on the relative depth of sensor placement. Relative velocity is understood as the ratio of the velocities averaged over the sensor measurement period on individual sensors to the average speed at the station (i.e. averaged over the sensors). Relative depth is understood as the ratio of the sensor placement horizon to the depth of the autonomous moored buoy station. The color indicates the depth of the station. The red line marks the straight line y = 1 and, accordingly, the position of the point above or below the straight line indicates whether the average speed on this sensor over the measurement period is higher or lower in relation to the average speed at the station.

Жүктеу (128KB)
13. Fig. 12. Relative values ​​of average speeds, divided by seasons, are shown on the y-axis. Relative speed is the ratio of the average speed for the season at the sensor to the average speed for the season at the station (i.e. averaged over the sensors). Relative depths of sensor placement are shown on the x-axis. Relative depth is the ratio of the sensor placement horizon to the depth of the autonomous moored buoy station. The depths of sensor placement are also shown in color. The line y = 1 is marked in blue; the position of the point above or below this line indicates whether the average speed at this sensor is above or below the average speed at the station.

Жүктеу (500KB)

© Russian Academy of Sciences, 2024

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.