Dynamics of air temperature changes in the atmospheric boundary layer during the solar eclipse of March 29, 2006

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The data of measurements of air temperature profiles in the atmospheric boundary layer (ABL) during the total solar eclipse on March 29, 2006 in Kislovodsk and at the Kislovodsk High-Mountain Scientific Station (KVNS) on the central shadow line are presented. The solar eclipse lasted from 14:08 to 16:27 local time, the total phase of the eclipse began at 15:15 and lasted 2:32. In development of the results obtained by us in our previous work, we compared the data on air temperature profiles at two points, Kislovodsk and KVNS. The influence of local conditions has been studied. It was shown that local conditions significantly affect both the amplitude of atmospheric pressure pulsations caused by a solar eclipse and their phase, as well as the nature of the change in the spectral density of air temperature with height in the range of periods corresponding to the duration of the solar eclipse. Based on the measurements of temperature profiles, the fluctuations of the atmospheric pressure difference at the level of the earth’s surface and at a certain height, up to which the temperature profiles were measured equal to 600 m, were reconstructed, caused by a solar eclipse, in coordinates: height – time has different trajectories in the case of Kislovodsk and KVNS. The difference in the trajectories of air temperature minima in Kislovodsk and at the KVNS determines both different delays in pressure minima relative to the beginning of the eclipse and time delays between surface pressure fluctuations at observation points as a whole. Also, a new method is proposed for determining the speed of ascending air currents using data on the altitude dependence of the time of reaching a minimum in temporal temperature variations caused by a solar eclipse. The changes in the spectral density of air are compared with height, the amplitude of the reconstructed atmospheric pressure pulsations in Kislovodsk and at the KVNS, and the speed of ascending air currents.

Texto integral

Acesso é fechado

Sobre autores

G. Bush

Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: bushgregory@yandex.ru
Rússia, 119017, Moscow, Pyzhevsky lane, 3

N. Elansky

Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences

Email: bushgregory@yandex.ru
Rússia, 119017, Moscow, Pyzhevsky lane, 3

Е. Kadyrov

“Central Aerological Observatory” of Roshydromet

Email: bushgregory@yandex.ru
Rússia, 141700, Dolgoprudny, Moscow region, Pervomayskaya str., 3

S. Kulichkov

Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: snk@ifaran.ru
Rússia, 119017, Moscow, Pyzhevsky lane, 3; 119081, Moscow, Leninskie Gory, building 1, building 2, GSP-1

I. Chunchuzov

Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences

Email: bushgregory@yandex.ru
Rússia, 119017, Moscow, Pyzhevsky lane, 3

N. Prokosheva

Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov

Email: bushgregory@yandex.ru
Rússia, 600000, Vladimir, Gorky str., 87

Bibliografia

  1. Буш Г. А., Грачёв А. И. Флуктуации атмосферного давления во время солнечного затмения 31 июля 1981 г. // Изв. АН СССР. Физика атмосферы и океана. 1984. Т. 20. № 7. С. 49–650.
  2. Буш Г.А, Еланский Н.Ф, Кадыгров Е.Н., Куличков С.Н., Чунчузов И.П., Прокошева Н.С. Влияние солнечного затмения 29 марта 2006 года на флуктуации атмосферного давления и приземные профили температуры // Изв. РАН. Физика атмосферы и океана. 2022. Т. 58. № 4. С. 1–8.
  3. Кадыгров Е.Н. Микроволновая радиометрия атмосферного пограничного слоя: метод, аппаратура, результаты измерений // Оптика атмосферы и океана. 2009. Т. 22. № 7. С. 697–704.
  4. Anderson R.C., Keefer D.R. Observation of the temperature and pressure changes during the 30 June1973 solar eclipse // Journal Atmos. Sci. 1975. V. 32. № 1. P. 228– 231.
  5. Goodwin G.L., Hobson G.J. Atmospheric gravity waves generated during a solar eclipse // Nature. 1978. V. 275. P. 109–111.
  6. Jones B.W., Miseldine G.J., Lambourne R.J.A. A possible atmosphericpressure wave from the total solar eclipse of 22 July 1990 // J. of Atmospheric and Terrestrial Physics. 1992. V. 54. № 2. P. 113–115.
  7. Eaton F.D., Hines, J.R., Hatch W.H. et al. Solar eclipse effects observed in the planetary boundary layer over a desert // Boundary-Layer Meteorology 1997. V. 83. P. 331–346.
  8. Kadygrov E.N., Miller E.A., Troitsky A.V. Study of Atmospheric Boundary Layer Thermodynamics During Total Solar Eclipses // IEEE Transactions on Geoscience and Remote Sensing. 2013. V. 51. № 9. P. 4672–4677.
  9. Marty J.F., Daladier D. Linear spectral numerical model for internal gravity wave propagation // J. Atmos. Sci. 2010. V. 67. P. 1632–1642.
  10. Marty J.F., Daladier D., Ponceau E., Blank U., Munkhuu. Surface Pressure Fluctuations Produced by the Total Solar Eclipse of 1 August 2008 // J. Atm. Sci. 2013. V. 70. P. 809–823.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Air temperature fluctuations during the solar eclipse of 29.03.2006 depending on altitude. Kislovodsk – left panel, VNS – right panel.

Baixar (219KB)
3. Fig. 2. Spectral density of air temperature oscillations in the period range of 1 h 42 min – 4 h 16 min, in 4-hour segments, depending on time for altitudes from 0 to 600 m with a step of 100 m in Kislovodsk (left panel) and spectral density in the period range of 1 h 42 min – 3 h 12 min for VNS (right panel). Markers indicate the centers of 4-hour segments into which the realizations of air temperature oscillations were divided.

Baixar (180KB)
4. Fig. 3. Ratios A(h)/A(0) of spectral densities of air temperature A(h) to spectral densities A(0) at altitude h = 0 for the period range of 1 h 42 min – 3 h 12 min – left panel, and dependences of spectral densities in this period range on altitude – right panel, for Kislovodsk – 1 and VNS – 2, in the time interval from 14:00 to 18:00 on 29.03.2006.

Baixar (142KB)
5. Fig. 4. Spectral density of air temperature fluctuations on March 29, 2006, in the time interval from 2 p.m. to 6 p.m., for altitudes from 0 to 600 m with a step of 50 m. Left panel – Kislovodsk, middle panel – VNS, right panel – Kislovodsk on March 28, 2006.

Baixar (208KB)
6. Fig. 5. Averaged fluctuations in atmospheric pressure, minus second-degree polynomials, reconstructed from air temperature profiles in Kislovodsk-1 and VNS-2. Averaging width 20 min.

Baixar (133KB)
7. Fig. 6. Air temperature fluctuations filtered in the range of periods of 1 h 25 min – 4 h 16 min depending on the altitude, as well as air temperature minima caused by the solar eclipse (marked with diamonds), recorded at VNS (left panel) and in Kislovodsk (right panel). The vertical lines mark the beginning, total phase and end of the solar eclipse.

Baixar (203KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.