Deformation microstructure, metallic iron and inclusions of hollow negative crystals in olivine from Seimchan pallasite: evidence of solid-phase reduction of Fe2+

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Olivine grains from the Seymchan pallasite were studied using optical microscopy, Raman spectroscopy and scanning electron microscopy (SEM). Olivine is characterized by the presence of hollow straight channels <1 µm wide and inclusions of hollow negative crystals of prismatic habit 1–2 µm thick. The channels are oriented parallel to [001] of olivine and developed along [001] screw dislocations. The elongation axes of negative crystals are also oriented parallel to [001]. In the channels, hollow segments alternate with segments filled with metallic iron. Negative crystals are crystallographically faceted voids in olivine; the largest of them contain inclusions of metallic iron. The rectilinear configuration and crystallographic orientation of the channels correspond to the characteristics of [001] screw dislocations, which allows us to consider [001] dislocations as channel precursors. The data obtained demonstrate for the first time the evolution of [001] dislocations in olivine as a result of the reduction of divalent iron during the interaction of olivine with the host FeNi metal. A model is proposed for the transformation of dislocations with the formation of channels and hollow negative crystals in Seymchan olivine in accordance with one of the reactions:

2Fehost+ (Mg1−nFen)2SiO4 = 2n[FeO]host + [nSiO2 + 2nFe0 + (1 − n)Mg2SiO4 + 2nv2− + 2nv2+ ]ol,

2Fehost+ (Mg1−nFen)2SiO4 = 2n[FeO]host + [nMgSiO3 + nFe0 + (1 − n)Mg2SiO4 + nv2− + nv2+ ]ol.

According to the model, at T > 1000°C the reduction process is accompanied by an increase in the concentration of Fe0 and associated vacancies (v2- and + v2+) in dislocation zones. Voids in channels and in negative crystals are products of the annihilation of anionic and cationic structural vacancies having opposite charges. Phase association formed in this solid-phase transformation of olivine corresponds to the either OSI (olivine → SiO2 + 2Fe0) or OPI (olivine → pyroxene + Fe0) buffer equilibrium. The results can be used for reconstruction of the thermal and shock histories of different types of pallasites.

Full Text

Restricted Access

About the authors

N. R. Khisina

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Science

Author for correspondence.
Email: khisina@gmail.com
Russian Federation, Kosygin st., 19, Moscow, 119991

D. D. Badyukov

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Science

Email: badyukov@geokhi.ru
Russian Federation, Kosygin st., 19, Moscow, 119991

K. A. Lorenz

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Science

Email: c-lorenz@yandex.ru
Russian Federation, Kosygin st., 19, Moscow, 119991

Yu. N. Palyanov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian branch of Russian Academy of Science

Email: palyanov@igm.nsc.ru
Russian Federation, Academician Koptyug, 3, Novosibirsk, 630090

I. N. Kupriyanov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian branch of Russian Academy of Science

Email: spectra@igm.nsc.ru
Russian Federation, Academician Koptyug, 3, Novosibirsk, 630090

B. B. Schkursky

M.V. Lomonosov Moscow State University

Email: shkursky@yandex.ru

Department of Geology

Russian Federation, Leninskye Gory, 1, Moscow, 119991 Russia

References

  1. Вернадский В. И. (1943) Бюллетень Центральной Комиссии по метеоритам, кометам и астероидам Астрон. совета АН СССР. 37, 1.
  2. Доливо-Добровольская Г.И., Коломенская В. Д., Гаврилова Н. Н., Перелыгин В. П., Стеценко С. Г. (1976) Треки тяжелых космических ядер и дефекты структуры в кристаллах оливина из палласитов. Геохимия. (10), 1476–1484.
  3. Кашкаров Л. Л., Багуля А. В., Владимиров М. С., Гончарова Л. А., Ивлиев А. И., Калинина Г. В., Коновалова Н. С., Окатьева Н. М., Полухина Н. Г., Русецкий А. С., Старков Н. И. (2011) Методика определения энергии ядер сверхтяжелых элементов (Z>30) галактических космических лучей по трекам в кристаллах оливина из палласита Марьялахти. Вестник ОНЗ РАН. 3, NZ6015. https://doi.org/10.2205/2010NZ000033
  4. Кукушкин С. А., Осипов А. В., Редьков А. В. (2020) Вакансионный рост ограненных пор в кристаллах по механизму Чернова. Известия РАН. Механика твердого тела. 1, 94–100.
  5. Отгонсурэн О., Перелыгин В. П. (1974) Об идентификации следов тяжелых ядер первичного космического излучения в минералах из метеоритов. Атомная энергия. 37, вып. 2, 164–165.
  6. Сорокин Е. М., Яковлев О. И., Слюта Е. Н., Герасимов М. В., Зайцев М. А., Щербаков В. Д., Рязанцев К. М., Крашенинников С. П. (2020) Экспериментальная модель образования нанофазного металлического железа в лунном реголите. ДАН. Серия Науки о Земле. 492(2), 49–52.
  7. Khisina N. R., Badyukov D. D., Senin V. G., Burmistrov A. A. (2020) Evidence for local shock melting in Seymchan meteorite. Geochem. Int. 58(9), 994–1003.
  8. Хисина Н. Р., Вирт Р. (2012) Наноструктурные особенности (Au, Ag)-микросферул из рудных геологических проб. Зап. РМО. 141(1), 80–87.
  9. Boesenberg J. S., Delaney J. S., Hewins R. H. (2012). A petrological and chemical re-examination of main group pallasite formation. Geochim. Cosmochim. Acta. 89, 134–158.
  10. Boland J. N., Duba A. (1981) Solid-state reduction of iron in olivine – planetary and meteoritic evolution. Nature. 294(12), 142–144.
  11. Boland J. N., Duba A. (1985) Defect mechanisms for the solid state reduction of olivine. In Point defects in minerals (Ed. R. N. Schock). Geophysics Monograph Ser. Vol. 1, AGU, Washington, D.C., 211–225.
  12. Boland J., Duba A. G. (1986) Electron microscope study of the stability field and degree of nonstoichiometry in olivine. J. Geophys. Res. 91(B5), 4711–4722.
  13. Boland J. N. and Buiskool Toxopeus J. M.A., (1977) Dislocation mechanisms in peridotite xenoliths in kimberlites. Contrib. Mineral. Petrol. 60, 17–30.
  14. Bondar Yu.V., Perelygin. V.P. (2003) Cosmic history of some pallasites based on fossil track studies. Radiation measurements. 36, 367–373.
  15. Buseck P. (1977) Pallasite meteorites: mineralogy, petrology and geochemistry. Geochim. Cosmochim. Acta. 6, 711–740.
  16. Christie J. M., Ardell A. I. (1976) Deformation structures in menerals. In Electron microscopy in mineralogy (Ed. H.-R. Wenk). Spinger-Verlag Berlin-Heidelberg-New York, 374–403.
  17. Connolly H. C., Jr., Hewins R., Ash P. et al. (1994) Carbon and the formation of reduced chondrules. Nature. 371, 136–139.
  18. Cotterill C. B. A. (1961) Generation of vacancy aggregates upon quenching. Phil. Mag.6, 1351.
  19. Dellagiustina D. N., Habib N., Domanik K. J., Hill D. H., Lauretta D. S., Goreva Y. S., Killgore M., Hexiong Y., Downs R. T. (2019) The Fukang pallasite: Characterization and implications for the history of the Main group parent body. Meteorit. Planet. Sci. 54, 1781–1807.
  20. Demouchy S. (2021) Defects in olivine. Eur. J. Mineral. 33, 249–282.
  21. Herzog G. F., Cook D. L., Cosarinsky M., Huber L., Leya I., Park J. (2015) Cosmic-ray exposure ages of pallasites. Meteorit. Planet. Sci. 50, 86–111.
  22. Green H. W. (1976) Plasticity of olivine in peridotites. In Electron microscopy in mineralogy. (Ed. H.-R. Wenk). Spinger-Verlag Berlin-Heidelberg-New York, 443–465.
  23. Green H. W., Radcliffe S. V. (1975) Fluid precipitates in rocks from the Earth’s mantle. Geol. Soc. Am. 86, 846–852.
  24. Jaoul O. (1990) Multicomponent diffusion and creep in olivine. J. Geophys. Res. 95, 17631–17642.
  25. Jung S., Yamamoto T., Ando J.-i., Jung H. (2021) Dislocation creep of olivine and amphibole in amphibole peridotites from Aheim, Norway. Minerals 11(9), 1018.
  26. Karato S. I. (1987) Scanning electron microscope observation of dislocations in olivine. Phys. Chem. Min. 14, 245–248.
  27. Karato S. I. (2008) Deformation of earth materials. New York: Cambridge university press, 463 pp.
  28. Karato S. I., Wenk H.-R., eds. (2002) Plastic deformation of minerals and rocks. Rev. Mineral. Geochem. 51, The Mineralogical Society of America, Berlin, Boston: De Gruyter, 420 pp.
  29. Khisina N. R., Wirth R., Matsyuk S., Koch-Műller M. (2008) Microstructures and OH-bearing nano-inclusions in “wet” olivine xenocrists from the Udachnaya kimberlite. Eur. J. Mineral. 6, 1067–1079.
  30. Klosterman M. J., Buseck P. R. (1973) Structural analysis of olivine in pallasitic meteorites: deformation in planetary interiors. J. Geophys. Res. 78(32), 7581–7588.
  31. Kohlstedt D. L., Goetze C., Durham W. B., Sande J. V. (1976) New technique for decorating dislocations in olivine. Science 191, 1045–1046.
  32. Krishnaswami S., Lal P., Prabhu N., Tamhane A. G. (1971) Olivines: revelation of tracks of charged particles. Science 174, 287–291.
  33. Lemelle L., Guyot F., Fialin M., Pargamin J. (2000) Experimental study of chemical coupling between reduction and volatilization in olivine single crystals. Geochim. Cosmochim. Acta. 64, 3237–3249.
  34. Lemelle L., Guyot F., Leroux H., Libourel G. (2001) An experimental study of the external reduction of olivine single crystals. Am. Mineral. 86, 47–54.
  35. Leroux H., Libourel G., Lemelle L., Guyot F. (2003) Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction. Meteorit. Planet. Sci. 38, 81–94.
  36. Liu W., Xu H., Shi F. (2021) Decorated dislocations in naturally deformed olivine with C-type fabric: A case study in the Lüliangshan garnet peridotite from the North Qaidam ultrahigh-pressure belt, NW China. Tectonophys. 814, 228971.
  37. Matsui T., Karato S.-I., Yokokura T. (1980) Dislocation structures of olivine from pallasite meteorites. Geophys. Res. Let. 7, 1007–1010.
  38. Mittlefehldt D. W. (2005) Origin of Main-Group pallasites. Met. Planet. Sci. 40, A104.
  39. Mori H. (1986) Dislocation substructures of olivine crystals from pallasite meteorites. Lunar Planet. Sci. Conf. 17, 571–572.
  40. Mussi A., Cordier P., Demouchy S., Vanmansart C. (2014) Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography. Phys. Chem. Miner. 41, 537–545.
  41. Mussi A., Nafi M., Demouchy S., Cordier P. (2015) On the deformation mechanism of olivine single crystals at lithospheric temperatures: an electron tomography study. Eur. J. Mineral. 27, 707–715.
  42. Mussi A., Cordier P., Demouchy S., Hue B. (2017) Hardening mechanisms in olivine single crystal deformed at 1090°C: an electron tomography study. Phil. Mag. 97, 3172–3185.
  43. Nakamura A., Schmalzried H. (1983) On the nonstoichiometry and point defects of olivine. Phys. Chem. Mineral. 10, 27–37.
  44. Nitsan U. (1974) Stability field of olivine with respect to oxidation and reduction. J. Geophys. Res. 79, 706–711.
  45. Ohashi T. (2018) Generation and accumulation of atomic vacancies due to dislocation movement and pore annihilation. Phil. Mag. 98, 2275–2295.
  46. Righter K., Arculus R. J., Delano J. W., Paslick C. 1990. Electrochemical measurements and thermodynamic calculations of redox equilibria in pallasite meteorites: Implications for the eucrite parent body. Geochim. Cosmochim. Acta. 54(6), 1803–1815.
  47. Sharygin V. V., Kovyazin S. V., Podgornykh N. M. (2006) Mineralogy of olivine-hosted inclusions from the Omolon pallasite. Lunar Planet. Sci. Conf. 37, abstract #1235.
  48. Shima M., Okada A., Yabuki H. (1980) Mineralogical and petrographic study of the Zaisho meteorite, a pallasite from Japan. Z. Naturforsch. 35a, 64–68. Minerals, 10, 27–37.
  49. Schwab R. G., Freisleben B. (1988) Fluid CO2 inclusions in olivine and pyroxene and their behavior under high pressure and temperature conditions. Bull. Minéral. 111, 297–306.
  50. Steele I. M. (1994). Chemical zoning and exsolution in olivine of the Pavlodar pallasite: Comparison with Springwater olivine. Lunar Planet. Sci. Conf. 25, 1335–1336.
  51. Stevens M. R., Bell D. R., Buseck P. R. (2010). Tubular symplectic inclusions in olivine from the Fukang pallasite. Meteorit. Planet. Sci. 45(5), 899–910.
  52. Tamada O., Shen B., Morimoto N. (1983) The crystal structure of laihunite 0.4(Fe2+)0.8(Fe3+)0.8SiO4. Mineral. J. 11, 382–391.
  53. Thieme M., Demouchi S., Mainprice D., Barou F., Cordier P. (2018) Stress evolution and associated microstructure during transient creep of olivine at 1000–1200°C. Phys. Earth Planet. Inter. 278, 34–46.
  54. Tingle T. N., Roedder E., Green H. W. (1992) Formation of fluid inclusions and etch tunnels in olivine at high pressure. Am. Mineral. 77, 296–302.
  55. Viti C., Frezzotti M. L. (2000). Re-equilibration of glass and CO2 inclusions in xenolith olivine: a TEM study. Am. Mineral. 85, 1390–1396.
  56. Viti C., Frezzotti M.-L. (2001) Transmission electron microscopy applied to fluid inclusion investigations. Lithos. 55, 125–138.
  57. Yang H. (2009) Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle. Lithos. 109, 341–349.
  58. Yurimoto H., Morioka M., Nagasawa H. (1992) Oxygen self-diffusion along high diffusivity paths in forsterite. Geochemical J. 26(4), 181–188.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Linear contrast in Seymchan olivine. (a) Two mutually perpendicular systems of linear contrast I and II in olivine, corresponding to dislocation slip bands in olivines along [001] (system I) and [100] (system II). (b) Dominant system of linear contrast along [001] (system I). The contrast bands are discontinuous. Optical image. Transmitted light, thin section plane (010).

Download (306KB)
3. Fig. 2. Prismatic inclusions (hollow negative crystals) in olivine from the Seymchan pallasite. (a) Inclusion cluster area. Inclusion elongation axes are parallel to the contrast bands of system I in Fig. 1. (b) Large inclusion with a “head” filled with an optically opaque substance. The inclusion was not exposed during polishing of the section. Optical image. Transmitted light, section (010).

Download (150KB)
4. Fig. 3. The appearance of blurred "tails" at the ends of contrast bands of system I due to defocusing in a section whose plane does not belong to the family of planes {hk0}. Blurred "tails" indicate the linear nature of the defect. Optical image, transmitted light.

Download (74KB)
5. Fig. 4. Linear defects of system I, shown by contrast bands [001] in Fig. 1, are channels in olivine. The channels have a heterogeneous structure with alternating dark and light segments. Optical image, transmitted light.

Download (65KB)
6. Fig. 5. Channel destruction with nucleation of a hollow negative crystal. The thickness of the negative prismatic crystal is comparable to the channel width, but, unlike the extended channel, the negative crystal has end faces and a finite length. Optical image, transmitted light.

Download (36KB)
7. Fig. 6. Raman spectra of inclusions indicate that the transparent "bodies" of inclusions are voids. When focusing on inclusions, no new lines appear in the Raman spectra in addition to the lines from the host olivine, but the intensity of the olivine bands systematically decreases when focusing on inclusions.

Download (156KB)
8. Fig. 7. Metallic iron in a hollow inclusion (a) – BSE/SEM image, oblique section of the inclusion, section plane {hk0}. Bright white – metallic iron; dark – cavity; (b), (c) and (d) – X-ray maps (Kα) of the distribution of Fe, Ni and S in the inclusion.

Download (320KB)

Copyright (c) 2024 Russian Academy of Sciences