The role of x-ray technicians in overcoming the appearance of artifacts during magnetic resonance imaging

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Magnetic resonance imaging artifacts significantly impair the quality of the study and can become a source of diagnostic errors. Incorrect interpretation of artifacts and mistaking them for pathologies, in addition to incorrect treatment tactics, requires repeated examination, often for a fee, which also costs time and effort for both medical staff and patients. However, despite the presence of certain artifacts that can affect the quality of images and their analysis, there are effective ways to eliminate or reduce them]. This should be kept in mind when preparing the patient for the examination and during the actual examination in order to reduce the likelihood of obtaining an artifactual image and facilitate the correct diagnosis.

Full Text

Restricted Access

About the authors

Valery P. Kutsenko

Federal State Budgetary Institution of Higher Professional Education «St. Petersburg State Pediatric Medical University» of the Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: val9126@mail.ru
ORCID iD: 0000-0001-9755-1906
SPIN-code: 5760-0218

Candidate of Medical Sciences, Associate Professor of the Department of Modern Diagnostic Methods and Radiotherapy named after Professor S.A. Reinberg

Russian Federation, Saint-Petersburg

Svetlana V. Menshikova

Federal State Budgetary Institution of Higher Professional Education «St. Petersburg State Pediatric Medical University» of the Ministry of Healthcare of the Russian Federation

Email: val9126@mail.ru
ORCID iD: 0000-0003-2448-6116
SPIN-code: 6879-2474

assistant at the Department of Modern Diagnostic Methods and Radiotherapy named after Professor S.A. Reinberg

Russian Federation, Saint-Petersburg

Roman A. Postanogov

Federal State Budgetary Institution of Higher Professional Education «St. Petersburg State Pediatric Medical University» of the Ministry of Healthcare of the Russian Federation

Email: r.postanogov@icloud.com
ORCID iD: 0000-0002-0523-9411
SPIN-code: 8686-1597

assistant at the Department of Modern Diagnostic Methods and Radiotherapy named after Professor S.A. Reinberg

Russian Federation, Saint-Petersburg

Daria D. Lopareva

Federal State Budgetary Institution of Higher Professional Education «St. Petersburg State Pediatric Medical University» of the Ministry of Healthcare of the Russian Federation

Email: loparevadasha@gmail.com
ORCID iD: 0009-0007-2089-7002

student

Russian Federation, Saint-Petersburg

References

  1. Allakhverdieva Ya.S., Vorobyov S.V., Mineev N.I. Modern possibilities of magnetic resonance technologies in the diagnosis of liver obesity. Medical Bulletin of the North Caucasus. 2018; 13 (4): 695–701. https://doi.org/10.14300/mnnc.2018.13140.
  2. Blondio E. The prevalence and causes of artifacts on MRI of the whole body in pediatric patients. Diagnostic and Interventional Imaging. 2023; 104 (3): 91–92. https://doi.org/10.1016/j.diii.2022.11.001.
  3. Varma D.R., Ponnaganti S., Dandu R.V. Beware of artifacts in orbital magnetic resonance imaging. Indian J Ophthalmol. 2020; 68 (11): 2516–2518. doi: 10.4103/ijo.IJO_640_20.
  4. Iozefi D. Y., Vinidchenko M. A., Demchenko N. S. On the criteria for malignancy of kidney angiomyolipes during magnetic resonance imaging. Chief Physician of the South of Russia. 2017; 53 (1). URL: https://cyberleninka.ru/article/n/k-voprosu-o-kriteriyah-malignizatsii-angiomiolipom-pochek-pri-magnitno-rezonansnoy-tomografii.
  5. Yong E., Rafferty M., Hannah M. et al. The use of T2-weighted MRI images with fat suppression to reduce the effect of the magic angle in the fibular tendons. Foot and Ankle Specialist. 2019; 12 (6): 513–517. https://doi.org/10.1177/1938640018819783.
  6. Kakunina Anna Stanislavovna, Kaznacheeva Anna Olegovna Artifacts of diffusion-weighted images. Symbol of Science. 2015; 11‒1. URL: https://cyberleninka.ru/article/n/artefakty-diffuzionno-vzveshennyh-izobrazheniy.
  7. Canzi P., Carlotto E., Simoncelli A. et al., The usefulness of the O-MAR algorithm in MRI skull base assessment to manage cochlear implant-related artifacts. Acta Otorhinolaryngol Ital. 2023; 43 (4): 273–282. doi: 10.14639/0392-100X-N2434.
  8. Lee H.H., Novikov D.S., Fieremans E. Removal of partial Gibbs ringing artifacts caused by Fourier (RPG) on MRI. Mag Reason Honey. 2021; 86 (5): 2733–2750. https://doi.org/10.1002/mrm.28830.
  9. Noda K., Ambale Venkatesh B., Wagner J. D. et al. A textbook on common MRI artifacts and ways to overcome them. Radiography: Review Publication of the Radiological Society of North America, 2022; 42 (3): E102–E103. https://doi.org/10.1148/rg.210021.
  10. Peschke E., Ulloa P., Jansen O. et al. Metal implants in MRI: dangers and artifacts of visualization. Metal implant in MRI – Gfahren und Bildartefakte. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2021; 193 (11): 1285–1293. https://doi.org/10.1055/a-1460-8566.
  11. Seregin, P. C. Trends in the development of methods for eliminating motor artifacts of MRI / P. C. Seregin // DSPA: Issues of the application of digital signal processing. 2011; 1 (3): 59–62.
  12. Suraj D. Serai, Houchun Harry Hu, Rizvan Ahmad et al. New methods of reducing motion artifacts in MRI of the abdominal cavity in children: tips and recommendations. 2020; 214 (5). https://doi.org/10.2214/AJR.19.21987.
  13. Fedorenko E.V., Lutsenko P.E., Arkhangelsky V.A. et al. Application of specialized protocols for compensation of motor artifacts in mid-field magnetic resonance imaging of the brain in patients with hiv infection. Radiation diagnostics and therapy. 2018; (3): 43–49. https://doi.org/10.22328/2079-5343-2018-9-3-43-49.
  14. Harel R., Kimchi G., Knoller N. MRI blind spot: a proposed new index of spinal implant artifacts. Neuroradiology. 2022; (89): 78–83. https://doi.org/10.1016/j.clinimag.2022.06.007.
  15. Shaidakov E.V., Sannikov A.B., Emelianenko V.M. et al. MRI and CT venography in the diagnosis of hemodynamic disorders in patients with chronic diseases of the veins of the lower extremities Part I. The possibilities of MRI studies in the visualization of the vascular bed of the lower extremities. Medical imaging. 2020; 24 (4): 81–101. https://doi.org/10.24835/1607-0763-2020-4-81-101.
  16. Jungmann P.M., Agten California, Pfirrmann K.V., and Sutter, R. Advances in MRI of metals. Journal of Magnetic Resonance Imaging: JMRI. 2017; 46 (4): 972–991. https://doi.org/10.1002/jmri.25708.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Common artifacts in routine MRI.

Download (609KB)
3. Fig. 2. PD weighted turbo spin echo (TSE) image of a patient moving the knee area (Marchenko N.V., 2024).

Download (11KB)
4. Fig. 3. T2-weighted (WI) TSE sagittal image, difficult MR image analysis due to poor preparation (Marchenko N.V., 2024).

Download (15KB)
5. Fig. 4. Repetition of the contour of the left breast on DWI axial projection (Marchenko N.V., 2024).

Download (13KB)
6. Fig. 5. Appearance of noise bands in FLAIR on axial projection (Marchenko N.V., 2024).

Download (13KB)
7. Fig. 6. Pseudomotor artifact at the border with the anterior abdominal wall on T1-weighted image in axial projection (Domiyenko O.M., 2024).

Download (19KB)
8. Fig. 7. Flow artifact on an axial localizer in a knee study (Marchenko N.V., 2024).

Download (34KB)
9. Fig. 8. T1-WI in axial projection with FS (Domiyenko O.M., 2024).

Download (12KB)
10. Fig. 9. T1-WI in coronal projection, where a chain of repeating contours is visualized in the direction of phase encoding (Domiyenko O.M., 2024).

Download (16KB)
11. Fig. 10. FLAIR in axial projection also with a chain of repeating contours in the phase encoding direction (Domiyenko O.M., 2024).

Download (19KB)
12. Fig. 11. Non-contrast magnetic resonance angiography in 2D TOF MRA mode using TSE. a – MRA technique followed by analysis in a T1-weighted image to obtain the inflow effect [15].

Download (34KB)
13. Fig. 12. T2-WI in sagittal projection with the effect of intravoxel dephasing in areas of the spinal cord (Marchenko N.V., 2024).

Download (15KB)
14. Fig. 13. Sagittal T2-WI TSE with chemical shift artifact (Domiyenko O.M., 2024).

Download (14KB)
15. Fig. 14. D WI FS in coronal projection with partial fat suppression (Domiyen-ko O.M., 2024).

Download (21KB)
16. Fig. 15. T2-WI TSE in coronal projection with STIR (Marchenko N.V., 2024).

Download (15KB)
17. Fig. 16. MRI picture of epithelioid angiomyolipoma of the lower pole of the right kidney, suspicious for areas of malignancy; the formation is presented in the axial projection in T2 and with signal suppression from fat [4].

Download (33KB)
18. Fig. 17. a, b – T1 VI in phase (bez selektivnogo podavleniya MR-signala ot zhira) i b – T1 VI out phase (c selektivnym podavleniyem MR-signala ot zhira) [1].

Download (33KB)
19. Fig. 18. Schematic of the influence of diamagnetic or paramagnetic/ferromagnetic material on the magnetic field [10].

Download (15KB)
20. Fig. 19. Metal artifacts on different MR sequences demonstrated in a total hip arthroplasty phantom at 3T (a) and 1.5T (b–f) [16].

Download (66KB)
21. Fig. 20. T2-WI in sagittal projection with the effect of intravoxel dephasing in areas of the spinal cord (Marchenko N.V., 2024).

Download (10KB)
22. Fig. 21. T2-WI in sagittal projection with the effect of intravoxel dephasing in areas of the spinal cord (Marchenko N.V., 2024).

Download (9KB)
23. Fig. 22. Assessment of signal voids. (A) Axial T1w TSE sequence without O-MAR, (B) with O-MAR [7].

Download (19KB)
24. Fig. 23. Artifacts associated with uncompensated eddy currents (Marchenko N.V., 2024).

Download (36KB)
25. Fig. 24. T2-VI TSE with overlay of part of the nose (Domiyenko O.M., 2024).

Download (15KB)
26. Fig. 25. Localizer in sagittal projection with occipital overlay (Domiyenko O.M., 2024).

Download (10KB)
27. Fig. 26. SWI in axial projection with Gibbs’s ringing (Marchenko N.V., 2024).

Download (13KB)
28. Fig. 27. Magic angle effect (MAE) in the peroneus brevis tendon on proton density fat suppression sequence (yellow arrow). B. Absence of the MAE in the peroneus brevis tendon on T2-weighted fat suppression (yellow arrow) [5].

Download (12KB)

Copyright (c) 2025 Russkiy Vrach Publishing House