Radioprotective properties of natural immunomodulators – ligands of toll-like receptors (Literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Existing radioprotective drugs have serious side effects. Ligands of toll-like receptors (TLRs), which are the one of the primary pattern-recognizing receptors of innate immunity, are considered potentially useful compounds for reducing the toxic effects of radiation exposure. On cell cultures, the radioprotective activity of TLR2, TLR5, or TLR9 receptor agonists has been shown, in particular, the suppression of radiation-induced apoptosis and an increase in cell viability. The drug CBLB502 (TLR5 ligand) contributed to the bone marrow protection and intestinal epithelial cells after irradiation of mice and rhesus monkeys. Activation of TLR4 by its ligand, lipopolysaccharide, reduces bone marrow damage and increases the survival rate of mice. The most promising anti-radiation drugs are agonists of several TLRs – the TLR2/6 co-agonist drug CBLB613 and TLR2/6/4 receptor co-agonists beta-D-glucans. The data on the scientific literature indicate the promise of using TLR ligands as a basis for the new anti-radiation agents development.

About the authors

E. V. Murzina

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: elenmurzina@mail.ru

кандидат биологических наук

Russian Federation, Saint Petersburg

N. V. Aksenova

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

Email: elenmurzina@mail.ru

кандидат медицинских наук

Russian Federation, Saint Petersburg

G. A. Sofronov

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

Email: elenmurzina@mail.ru

заслуженный деятель науки РФ, академик РАН, профессор, генерал-майор медицинской службы в отставке

Russian Federation, Saint Petersburg

K. N. Demchenko

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

Email: elenmurzina@mail.ru

кандидат медицинских наук, майор медицинской службы

Russian Federation, Saint Petersburg

A. V. Denisov

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

Email: elenmurzina@mail.ru

кандидат медицинских наук, подполковник медицинской службы

Russian Federation, Saint Petersburg

References

  1. Башарин В.А., Карамуллин М.А., Чеховских Ю.С. Актуальные вопросы совершенствования системы оказания медицинской помощи при острой радиационной патологии в Вооруженных Силах // Воен.-мед. журн. – 2016. – Т. 337, № 11. – С. 11–20.
  2. Крюков Е.В., Булка К.А., Чеховских Ю.С. и др. Возможности военно-медицинских организаций по оказанию специализированной медицинской помощи при чрезвычайных ситуациях радиационной природы // Вестн. Рос. воен.-мед. акад. – 2021. – Т. 73, № 1. – С. 153–162.
  3. Лисина Н.И., Щеголева Р.А., Шлякова Т.Г. и др. Противолучевая эффективность флагеллина в опытах на мышах // Радиац. биол. Радиоэкология. – 2019. – Т. 59, № 3. – С. 274–278.
  4. Мурзина Е.В., Софронов Г.А., Аксенова Н.В. и др. Экспериментальная оценка противолучевой эффективности рекомбинантного флагеллина // Вестн. Рос. воен.-мед. акад. – 2017. – Т. 59, № 3. – С. 122–128.
  5. Мурзина Е.В., Софронов Г.А., Симбирцев А.С. и др. Экспериментальная оценка влияния бета-D-глюкана на выживаемость мышей при радиационном воздействии // Мед. акад. журн. – 2020. – Т. 20, № 2. – С. 59–68.
  6. Сапожников Р.Ю., Халимов Ю.Ш., Легеза В.И. и др. Профилактическая и лечебная эффективность рекомбинантного флагеллина при остром радиационном поражении // Вестн. Рос. воен.-мед. акад. – 2019. – Т. 67, № 3. – С. 141–144.
  7. Burdelya L.G., Krivokrysenko V.I., Tallant T.C. et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models // Science. – 2008. – Vol. 320, N 5873. – P. 226–230.
  8. Chen Y., Cao K., Liu H. et al. Heat killed Salmonella typhimurium protects intestine against radiation injury through Wnt signaling pathway // J. Oncol. – 2021. – Vol. 2021. – P. 5550956. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233082/ (дата обращения: 14.03.2022).
  9. Chen Y., Xu Y., Du J. et al. Radioprotective effects of heat-killed Mycobacterium tuberculosis in cultured cells and radiosensitive tissues // Cell. Physiol. Biochem. – 2016. – Vol. 40, N 3–4. – P. 716–726.
  10. Cheng Y., Du J., Liu R. et al. Novel chimeric TLR2/NOD2 agonist CL429 exhibited significant radioprotective effects in mice // J. Cell. Mol. Med. – 2021. – Vol. 25, N 8. – P. 3785–3792.
  11. Cheung N.K., Modak S., Vickers A., Knuckles B. Orally administered beta-glucans enhance anti-tumor effects of monoclonal antibodies // Cancer Immunol. Immunother. – 2002. – Vol. 51, N 10. – P. 557–564.
  12. Chugh R.M., Mittal P., Mp N. et al. Fungal mushrooms: a natural compound with therapeutic applications // Front Pharmacol. – 2022. – Vol. 13. – P. 925387. URL: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC9328747/ (дата обращения: 14.09.2022).
  13. Guo J., Liu Z., Zhang D. et al. TLR4 agonist monophosphoryl lipid A alleviated radiation-induced intestinal injury // J. Immunol. Res. – 2019. – Vol. 2019. – P. 2121095. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 6589195/ (дата обращения: 25.01.2022).
  14. Iwasaki A., Medzhitov R. Control of adaptive immunity by the innate immune system // Nat. Immunol. – 2015. – Vol. 16, N 4. – Р. 343–353.
  15. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors // Nat. Immunol. – 2010. – Vol. 11, N 5. – Р. 373–384.
  16. Khan A.A., Gani A., Masoodi F.A. et al. Structural, thermal, functional, antioxidant & antimicrobial properties of β-d-glucan extracted from baker’s yeast (Saccharomyces cerevisiae). Effect of γ-irradiation // Carbohydr. Polym. – 2016. – Vol. 140. – P. 442–450.
  17. Li X., Wang Z., Wang L. Radioprotective activity of neutral polysaccharides isolated from the fruiting bodies of Hohenbuehelia Serotina // Phys. Med. – 2015. – Vol. 31, N 4. – P. 352–359.
  18. Liu C., Zhang C., Mitchel R.E. et al. A critical role of toll-like receptor 4 (TLR4) and its’ in vivo ligands in basal radio-resistance // Cell Death. Dis. – 2013. – Vol. 4, N 5. – P. 649. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674368/ (дата обращения: 25.01.2022).
  19. Liu Y., Ma Sh., Fu Q. et al. Effect of Lentinan on membrane-bound protein expression in splenic lymphocytes under chronic low-dose radiation // Int. Immunopharmacol. – 2014. – Vol. 2, N 2. – P. 505–514.
  20. Liu Z., Lei X., Li X. et al. Toll-like receptors and radiation protection // Eur. Rev. Med. Pharmacol. Sci. – 2018. – Vol. 22, N 1. – P. 31–39.
  21. Pillai T.G., Devi P.U. Mushroom beta-glucan: potential candidate for post irradiation protection // Mutat. Res. Genet. Toxicol. Environ. Mutagen. – 2013. – Vol. 751, N 2. – P. 109–115.
  22. Saha S., Bhanja P., Liu L. et al. TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome // PLoS One. – 2012. – Vol. 7, N 1. – P. 29357. URL: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC 3251576/ (дата обращения: 20.12.2021).
  23. Shi T., Li L., Zhou G. et al. Toll-like receptor 5 agonist CBLB502 induces radioprotective effects in vitro // Acta Biochim. Biophys. Sin. (Shanghai). – 2017. – Vol. 49, N 6. – P. 487–495.
  24. Singh V.K., Ducey E.J., Fatanmi O.O. et al. CBLB613: a TLR 2/6 agonist, natural lipopeptide of Mycoplasma arginini, as a novel radiation countermeasure // Radiat. Res. – 2012. – Vol. 177, N 5. – P. 628–642.
  25. Singh V.K., Hanlon B.K., Santiago P.T., Seed T.M. A Review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: Part III. Countermeasures under early stages of development along with «Standard of care» medicinal and procedures not requiring regulatory approval for use // Int. J. Radiat. Biol. – 2017. – Vol. 93, N 9. – P. 885–906.
  26. Singh V.K., Seed T.M. Entolimod as a radiation countermeasure for acute radiation syndrome // Drug Discov. Today. – 2021. – Vol. 26, N 1. – P. 17–30.
  27. Singh V.K., Seed T.M. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems // Expert Opin. Pharmacother. – 2020. – Vol. 21, N 3. – P. 317–337.
  28. Takemura N., Kawasaki T., Kunisawa J. et al. Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome // Nat. Commun. – 2014. – Vol. 5. – P. 3492. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959210/ (дата обращения: 20.12.2021).
  29. Van Steenwijk H.P., Bast A., de Boer A. Immunomodulating effects of fungal beta- glucans: from traditional use to medicine // Nutrients. – 2021. – Vol. 13, N 4. – P. 1333. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072893/ (дата обращения: 22.05.2022).
  30. Vlassopoulou M., Yannakoulia M., Pletsa V. et al. Effects of fungal beta-glucans on health – a systematic review of randomized controlled trials // Food Funct. – 2021. – Vol. 12, N 8. – P. 3366–3380.
  31. Wang L., Li X. Radioprotective effect of Hohenbuehelia Serotina polysaccharides through mediation of ER apoptosis pathway in vivo // Int. J. Biol. Macromol. – 2019. – Vol. 127. – P. 18–26.
  32. Wang S., Liu X., Qiao T., Zhang Q. Radiosensitization by CpG ODN7909 in an epidermoid laryngeal carcinoma Hep-2 cell line // J. Int. Med. Res. – 2017. – Vol. 45, N 6. – P. 2009–2022.
  33. Xiao Z., Zhou W., Zhang Y. Fungal polysaccharides // Adv. Pharmacol. – 2020. – Vol. 87. – P. 277–299.
  34. Xu Y., Chen Y., Liu H. et al. Heat-killed Salmonella typhimurium (HKST) protects mice against radiation in TLR4-dependent manner // Oncotarget. – 2017. – Vol. 8, N 40. – P. 67082–67093.
  35. Yan L., Xu G., Qiao T. et al. CpG-ODN 7909 increases radiation sensitivity of radiation-resistant human lung adenocarcinoma cell line by overexpression of Toll-like receptor 9 // Cancer Biother. Radiopharm. – 2013. – Vol. 28, N 7. – P. 559–564.
  36. Zhang Y., Zhang Z., Liu H. et al. Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus // Int. J. Biol. Macromol. – 2020. – Vol. 165, Pt B. – P. 2934–2946.
  37. Zhao W., Jiang X., Deng W. et al. Antioxidant activities of Ganoderma lucidum polysaccharides and their role on DNA damage in mice induced by cobalt-60 gamma-irradiation // Food Chem. Toxicol. – 2012. – Vol. 50, N 2. – P. 303–309.
  38. Zheng L., Asprodites N., Keene A.H. et al. TLR9 engagement on CD4 T lymphocytes represses gamma-radiation-induced apoptosis through activation of checkpoint kinase response elements // Blood. – 2008. – Vol. 111, N 5. – P. 2704–2713.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Murzina E.V., Aksenova N.V., Sofronov G.A., Demchenko K.N., Denisov A.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 01975 от 30.12.1992.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies