Trace element uptake assessment in the planktonic biofiltration system

Cover Page

Cite item


The concentration of trace elements (Fe, Mn, Cr, Co, Ni, Cu, Pb, Cd, As) through the planktonic food chain of the White Sea have been studied by the experimental approach. The experiment included zooplankton sampled in a reference area feeding on a seston contained the different trace metals concentrations. Seston sampled in the st. Chupa was enriched by Fe, Cu, Pb, Cr, Co, As, and Ni comparing to the seston from st. Kartesh (reference area). The differences in the concentrations of the suspended particular matter and of the indicator elements of a terrigenous admixture (Al, Ti, Zr) evidence on higher natural background of the trace metals’ content in the seston from st. Chupa due to higher contribution of the minerals. Zooplankton that fed on the seston characterised by higher trace elements’ content has accumulated Fe, Mn, and Cr, at a less degree, Ni, Co, Pb, and Cu; particularly, these were the elements which content were high in seston. Despite Mn content in seston did not differ between two treatments, this element was accumulated by the zooplankton, but had low content in faecal pellets. This tells about the highest Mn assimilation by the zooplankton; this element may become the most bioavailability. When comparing the trace element content between the seston and the faecal pellets, the concentrations of the most elements in faecal pellets are lower comprising as low as Zn – 72%; Mn – 24; Cu – 97; Pb – 62; Cr – 99; Co – 78; Ni – 87; As – 96; Cd – 65% of the concentration in the seston.

About the authors

D. F. Budko

Shirshov Institute of Oceanology, Russian Academy of Sciences

Author for correspondence.
Russian Federation, Moscow

D. M. Martynova

Zoological Institute, Russian Academy of Sciences

Russian Federation, St. Petersburg


  1. Будько Д.Ф., Демина Л.Л., Мартынова Д.М. Химический и вещественный состав рассеянного взвешенного материала (взвеси) из прибрежной зоны Белого моря // Вода: химия и экология. № 2. 2016. С. 3-10.
  2. Будько Д.Ф., Демина Л.Л., Мартынова Д.М., Горшкова О.М. Микроэлементы в различных трофических группах беломорских организмов // Океанология. 2015. Т. 55. № 5. С. 808-820.
  3. Гордеев В.В., Шевченко В.П. Формы некоторых металлов во взвеси Северной Двины и их сезонные вариации // Океанология. 2012. Т. 52. № 2. С. 282-291.
  4. Демина Л.Л. Количественная оценка роли живого вещества в геохимической миграции микроэлементов в океане // Геохимия. 2015. №3. С.234-251.
  5. Демина Л.Л., Леонова Г.А., Бобров В.А., Мартынова Д.М. Микроэлементы в организмах планктона Белого моря // Система Белого моря. Т.II. М.: Научный мир, 2012. С. 691-715.
  6. Демина Л.Л., М.А. Левитан, Н.В. Политова. О формах нахождения некоторых тяжелых металлов в донных осадках эстуарных зон рек Оби и Енисея (Карское море) // Геохимия. 2006. № 2. С. 212-226.
  7. Демина Л.Л., Немировская И.А. Пространственное распределение микроэлементов в сестоне Белого моря // Океанология. 2007. Т. 47. №3. С. 390-402.
  8. Ленинджер А. Основы биохимии: в 3-х т. Т. 1. М.: Мир, 1985. 367 С.
  9. Лисицын А.П. Потоки осадочного вещества, природные фильтры и осадочные систе¬мы «живого океана» // Геология и геофизика. 2004. Т. 45. № 1. С. 15-48.
  10. Лобус Н.В. Элементный состав зоопланктона Карского моря и заливов Восточного побережья Новой Земли // Океанология. 2016. Т. 56. № 6. С. 890-900.
  11. Мартынова Д.М. Комплексный подход к оцен- ке потока пеллет в Белом море // Система Белого моря. Т.II. М.: Научный мир, 2012. С. 675-691.
  12. Саенко Г.Н. Закономерности концентрирования металлов и галогенов морскими организмами // Докл. АН СССР. 1989. Т. 306. №3. С. 759-763.
  13. Berger V.Ja., Dahle S., Galaktionov K.V. White Sea. Ecology and Environment // Derzavets Publisher. St. Peterburg-Tromsø, 2001. 158 p.
  14. Budko D., Demina L. Chemical fractionation of toxic heavy metals in Holocen bottom sediments in the White Sea // Proceeding of the 8th international Siberian early career geoscientists conference. 13-24 June 2016. P. 82-83.
  15. Campbell L.M., Norstrom R.J., Hobson K.A. et al. Mercury and other trace elements in a pelagic Arctic marine food web // Sci. Total Environ. 2005. 351-352. P. 247–263.
  16. Coelho J.P., Mieiro C.L., Pereira E. et al. Mercury biomagnification in a contaminated estuary food web: Effects of age and trophic position using stable isotope analyses // Marine Pollution Bulletin. 2013. V. 69. P. 110–115.
  17. Dehn, L.A., Follmann, E.H., Thomas, D.L. et al. Trophic relationships in an Arctic food web and implications for trace metal transfer // Sci. Total Environ. 2006. V. 362. P. 103–123.
  18. Dietz R., Riget F., Cleeman M., Aarkrog A. et al. Comparison of contaminants from different trophic levels and ecosystems // Sci. Total Environ. 2000. V. 245. P. 221–231.
  19. Irigoien X. Gut clearance rate constant, temperature and initial gut contents: a review // J. of Plankton Res. 1998. V. 20. I. 5. P. 997–1003.
  20. Fisher N.S., Reinfelder J.R. The trophic transfer of metals in marine systems // Metal speciation and bioavalability in aquatic systems / Eds. Tessier A., Turener D.R. IUPAC. John Wiley& Sons Ltd., 1995. 542 p.
  21. Graf G. Benthic-pelagic coupling in a deep-sea benthic community // Nature. 1989. № 341. P. 437-439
  22. Grotti M., Soggia F., Ianni C. et al. Bioavailability of trace elements in surface sediments from Kongsfjorden, Svalbard // Marine Pollution Bulletin. 2013. V. 77. P. 367–374.
  23. Hassen A., Saidi N., Cherif M. Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis // Biores. Technol. 2006. V. 65. P. 73–82.
  24. Jara-Marini M.E., Soto-Jimenez M.F., Paez-Osuna F. Trophic relationships and transference of cadmium, copper, lead and zinc in a sub-tropical coastal lagoon food web from SE Gulf of California // Chemosphere. 2009. V. 77. P. 1366–1373.
  25. Kosobokova K., Martynova D., Prudkovsky A. Contribution of Zooplankton to Vertical Carbon Fluxes in the Kara and White Seas // Polarforschung. 2006. 75 (2–3). P. 77-82.
  26. Koukina S.E., Korneeva G.A., Bek T.A. Forms of metals in the littoral sediments in Kandalaksha Bay of the White Sea in the Russian Arctic // Oceanology. 2010. V. 50. №. 6. P. 877–883.
  27. Leonova G.A., Bobrov V.A., Bogush A.A., Bychinskii V.A. Concentration of chemical elements by zooplankton of the White Sea // Oceanology. 2013. V. 53. № 1. P. 54–70.
  28. Li Y.-H. Factors controlling the distribution of ele- ments in the ocean // Trans. Res. Inst. Oceano-chemistry. 2008. V. 21. № 2. P. 1-21.
  29. Martynova D.M. Copepod faecal pellets in the White Sea: experimental and in situ studies // Oceanology. 2003. № 43. Р. 123-133.
  30. Nfon E., Cousins I.T., Järvinen O. et al. Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea. Sci. Total Environ. 2009. V. 407. P. 6267–6274.
  31. Pantyulin A.N. Hydrological system of the White Sea // Oceanology. 2003. V. 43. P. 1–14.
  32. Rahman M.A., Hasegawa H., Lim R.P. Bioac-cumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain // Environmental Res. 2012. V. 116. P. 118–135.
  33. Sieburth J.M., Smetacek J.M., Lenz J. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationships to plankton size fraction // Limnol. Oceanogr. 1978. V. 23. Р. 173-188.
  34. Tao Y., Yuan Z., Xiaona H., Wei M. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China // Ecotoxicology and Environmental Safety. 2012. V. 81. P. 55–64.
  35. Wang W.X. Interactions of trace metals and different marine food chains // Mar. Ecol. Prog. 2002. Ser. 243. P. 295–309.

Copyright (c) 2019 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies