Deep water circulation in the Hunter Channel (Southwest Atlantic) in a late Pleistocene and Holocene by benthonic foraminifera

Cover Page


Was reconstructed deep-sea water circulation near the Hunter Channel (Rio Grande Rise – South-West Atlantic) in a late Pleistocene and Holocene (MIS 4-MIS 1) by benthonic foraminifera. Was studied three cores of bottom sediment. Now moves the upper North Atlantic deep water (NADW) through the Hunter Channel from the North to the South. The lower NADW in the same direction came in MIS 2 and in MIS 4. There was the lower Circumpolar deep water (CPDW), NADW and Antarctic bottom water (AnBW) in MIS 3 periodically. CPDW prevail in a near bottom layer and in Holocene and in the late Pleistocene before the Hunter Channel sidewise the Argentine Basin. So in the Hunter Channel and on the way to it from south side for all studied period AnBW was almost not. Dissolution of carbonates during the Holocene happens in the deepest east part of the Hunter Channel. In Ice Ages processes of dissolution amplified and affected east part of the channel. Dissolution happen and happened not at the expense of AnBW, and at the expense of NADW which becomes there aggressive in relation to a calcium carbonate.

About the authors

N. P. Lukashina

Shirshov Institute of Oceanology, Russian Academy of Sciences

Author for correspondence.

Russian Federation, Moscow


  1. Бараш М.С. Четвертичная палеоокеанология Атлантического океана. М.: Наука, 1988. 272 с.
  2. Бараш М.С, Блюм Н.С., Оськина Н.С. Четвертичные палеотемпературы и некоторые черты осадконакопления в районе поднятия Риу-Гранди // Докл. АН СССР. 1986. Т. 291. № 4. С. 928–931.
  3. Дмитренко О.Б., Лукашина Н.П., Оськина Н.С. Позднечетвертичная биостратиграфия и палеоокеанология донных осадков колонки АСВ-17-1447 Юго-Западной Атлантики по микрофоссилиям // Океанология. 2012. Т. 52. № 2. С. 270–281.
  4. Лисицын А.П. Зональность природной среды и осадкообразование в океанах. Климатическая зональность и осадкообразование. М.: Наука, 1981. С. 5–45.
  5. Лукашина Н.П. Закономерности распределения бентосных фораминифер в Северной Атлантике // Океанология. 1988. Т. 28. № 4. С. 632–638.
  6. Лукашина Н.П. Современное растворение карбонатного вещества в тропической Атлантике по данным фораминиферового анализа // Океанология. 1991. Т. 32. №. 3. С. 550–556.
  7. Лукашина Н.П. Позднечетвертичная абиссальная циркуляция вод в Канарской котловине по данным изучения бентосных фораминифер // Океанология. 1992. Т. 32. № 2. С. 326-336.
  8. Лукашина Н.П. Палеоокеанология Северной Атлантики в позднем мезозое и кайнозое и возникновение современного глобального термогалинного конвейера по данным изучения фораминифер. М.: Научный мир, 2008. 287 с.
  9. Морозов Е.Г., Демидова Т.А., Лаппо С.C. и др. Распространение Антарктической донной воды через проход Вима // Докл. РАН. 2003. Т. 390. № 3. С. 402–405.
  10. Степанов В.Н. Океаносфера М.: Мысль, 1983. 270 с.
  11. Altenbach, A. V., Pflauman U., Schiebel R. et al. Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon // J. of Foram. Res. 1999. V. 29. № 3. P. 173–185.
  12. Barash M.S., Oskina N.S., Blyum N.S. Quaternary biostratigraphy and surface paleotemperatures by means of planktonic foraminifers Sites 515 and 518 DSDP Leg 72. // Initial Reports of DSDP /Eds. Barker P.F. et al. 1983. Leg. 72. P. 849–869.
  13. Berger W.H. Selective solution and paleoclimatic interpretation // Deep-Sea Res. 1968. V. 15. P. 31–43.
  14. Berger W.H. Paleoceanography: the deep-sea record // The Oceanic Lithosphere. The Sea / Eds. Emiliani et al. 1981. V. 7. P. 1437–1519.
  15. Berggren, W.A., Hamilton, N., Johnson, D.A. et al. Magnetobiostratigraphy of Deep-Sea Drilling Project Leg 72, sites 515–518, Rio Grande Rise (South Atlantic) // Initial Reports of DSDP /Eds. Barker P.F. et al. 1983. Leg 72. P. 939–948.
  16. Bylinskaya M.E. Range and stratigraphic significance of the Globorotalia crassaformis plexus // J. of Iberian Geology. 2004. V. 31. P. 51–63.
  17. Christopher W., Smart C.W. Abyssal NE Atlantic benthic foraminifera during the last 15 kyr: Relation to variations in seasonality of productivity // Mar. Micropal. 2008. V. 69. Р. 193–211.
  18. Corliss B.H., Anthony E. Rathburn A.E. Pore characteristics of deep-sea benthic foraminifera and linkage to oxygen levels. CD-ROM Produced by X-CD Technologies 33. Geol. Kongress, Oslo. 2008.
  19. De S., Gupta A. K. Deep-Sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of recent benthic foraminifera // Palaeogeogr., Palaeoclimatol., Palaeoecol. 2010. V. 291. P. 429–442.
  20. Fariduddin M., Loubere P. The surface ocean productivity response of deeper water benthic foraminifera in the Atlantic Ocean // Mar. Micropal. 1997. V. 32. P. 289–310.
  21. Fontanier C., Jorissen F. J., Chaillou G. et al. Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay // Deep-Sea Res. 2003. Part I. V. 50. № 4. P. 457–494.
  22. Garzoli S.L., Matano R. The South Atlantic and the Atlantic Meridional Overturning Circulation // Deep-Sea Res. 2011. P. II. V. 58. P. 1837–1847.
  23. Gudmundsson G. Distributional limits of Pyrgo species at the biogeographic boundaries of the Arctic and the North-Atlantic Boreal regions // J. of Foram. Res. 1998. V. 28. № 3. P. 240–256.
  24. Hogg N. Biscaye P., Gardner W., Schmitz, W.J. On the transport and modification of Antarctic Bottom Water in the Vema Channel // J. of Mar. Res. 1982. V. 40. (Suppl.). P. 231–263.
  25. Hodell D.F., Kennett J.P. Climatically induced changes in vertical water masses structure of the Vema Channel during the Pliocene: evidence from Deep-Sea Drilling Project holes 516 A, 517 and 518 // Initial Reports of DSDP/ Eds. Barker P.F. et al. 1983. V. 72. P. 907–919.
  26. Johnson D.A. The Vema Channel: Physiography, structure, and sediment - сurrent interactions // Mar. Geol. 1984. V. 58. (1/2). P. 1–34.
  27. Johnson D.A., Ledbetter V., Burckle L. Vema Channel paleooceanography dissolution cycles and episodic bottom water flow // Mar. Geol. 1977. V. 23. P. 1–33.
  28. Johnson D., McDowell S.E., Sulhvan L.G., Biscaye P.E. Abyssal hydrography, nephelometry, currents, and benthic boundary layer structure in the Vema Channel // J. of Geophys. Res. 1976. V. 8. № 1. P. 5771–5786.
  29. Jones G.A., Johnson D.A., Curry W.B. High-resolution stratigraphy in late Pleistocene//Holocene sediments of the Vema Channel // Mar. Geol. 1984. V. 58 (1/2). P. 59–87.
  30. Ledbetter M.T. Bottom-current speed in the Vema Channel recorded by particle size of sediment fine-fraction // Mar. Geol. 1984. V. 58. I. 1–2. P. 137–149.
  31. Ledbetter M.T. A late Pleistocene time-series of bottom-current speed in the Vema channel // Palaeogeorgaphy, - climatology, - ecology. 1986. V. 53. № 1. P. 97–105.
  32. Linke P., Lutze G.F. Microhabitat preferences of benthic foraminifera a static concept or a dynamic adaptation to optimize food acquisition? // Mar. Micropal. 1993. V. 20. № 3–-4. P. 215-234.
  33. Lohman G.P. Abyssal benthonic foraminifera as hydrographic indicators in the Western South Atlantic Ocean // J. of Foram. Res. 1978. V. 8. № 1. P. 6–34.
  34. Lutze G.F., Coulbourn W.T. Recent benthic foraminifera from the continental margin of northwest Africa: Community structure and distribution // Mar. Micropal. 1984. V. 8. № 5. P. 361–401.
  35. Mackensen A., Fiitterer D.K., Grobe H. , Schmiedi G. Benthic foraminiferal assemblages from the eastern South Atlantic Polar Front region between 35° and 57°S: Distribution, ecology and fossilization potential // Mar. Micropal. 1993. V. 22. Р. 33–69.
  36. Mackensen A., Schmiedl G., Harloff J., Giese M. Deep-Sea foraminifera in the South Atlantic Ocean: Ecology and assemblage generation // Micropaleontol. 1995. V. 41. № 4. P. 342–358.
  37. Mead G.A. Recent benthic foraminifera in the Polar Front region of the southwest Atlantic // Micropaleontol. 1985. V. 31. № 3. P. 221–248.
  38. Morigi C., Jorissen F.J., Gervais A. et al. Benthic foraminiferal faunas in surface sediments off NW Africa: Relationship with organic flux to the ocean floor // J. of Foram. Res. 2001. V. 31. P. 350–368.
  39. Morozov E.G., Tarakanov R.Y. The flow of Antarctic Bottom Water from the Vema Channel to the Brazil basin // Dokl. Earth Sci. 2014. V. 456 (1). P 598–601.
  40. Murgese D.S. De Deckker P. The distribution of deep-sea benthic foraminifera in core tops from the eastern Indian Ocean // Mar. Micropal. 2005. V. 56. P. 25–49.
  41. Peterson L.C., Lohman G.P. Major change in Atlantic deep and bottom waters 700000 years ago: benthonic foraminiferal evidence from the South Atlantic // Quat. Res. 1982. V. 17. P. 26–38.
  42. Peterson R.G., Stramma L. Upper-level circulation in the South Atlantic Ocean // Prog. Oceanogr. 1991. V. 26. P. 1–73.
  43. Schnitker D. Quaternary deep-sea benthic foraminifera and bottom water masses // Annual Rev. Earth and Planet. Sci. 1980. V. 8. P. 343–379.
  44. Smart, C.W., Gooday, A.J. Recent benthic foraminifera in the abyssal northeast Atlantic Ocean: relation to phytodetrital inputs // J. of Foram. Res. 1997. V. 27. P. 85–92.
  45. Speer K., Zenk W., Siedler G. et al. First resolution of flow through the Hunter Channel in the South At-lantic // Earth and Planetary Sci. Letters. 1992. V. 113. P. 287–292.
  46. Speer K., Zenk W. The Flow of Antarctic Bottom Water into the Brazil Basin // J. of physical oceanogr. 1993. V. 23. P. 2667–2682.
  47. Streeter S.S. Bottom water and benthonic foraminifera in the North Atlantic – glaial-interglacial contrasts // Quat. Res. 1973. V. 3. P. 131–141.
  48. Sun X., Corliss B. H., Brown C. W., Showers W. J. The effect of primary productivity and seasonality on the distribution of deep-sea benthic foraminifera in the North Atlantic // Deep –Sea Res. 2006. P. I. V. 53. P. 28–47.
  49. Tappa E., Thunell R. Late Pleistocene glacial/interglacial changes in planktonic foraminiferal biofacies and carbonate dissolution patterns in the Vema Channel // Marine Geology. 1984. V. 58. I. P. 101–122.
  50. Thomas E., Booth L., Maslin M., Shackleton N.J. Northeastern Atlantic benthic foraminifera during the last 45000 years: changes in productivity seen from the bottom up // Paleoceanography. 1995. V. 10. P. 545–562.
  51. Zenk W., Morozov E. Decadel warming of the coldest Antarctic Bottom Water flow through the Vema Channel // Geophys. Res. Letters. 2007. V. 34. P.1–5.
  52. Weyl P. K. The role of oceans in climatic changes: a theory of the Ice Ages // Meteor. Monographs. 1968. V. 8 (30). P. 37–62.



Abstract - 88

PDF (Russian) - 113




  • There are currently no refbacks.

Copyright (c) 2019 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies