Application to the World Ocean of the Theory of Transformation of a Mesoscale Vortex into a Submesoscale Vortex Thread When the Vortex Elongates by an Inhomogeneous Barotropic Flow
- Authors: Zhmur V.V.1,2,3, Belonenko T.V.3, Novoselova E.V.3, Suetin B.P.2
-
Affiliations:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Saint Petersburg State University
- Issue: Vol 63, No 2 (2023)
- Pages: 211-223
- Section: Физика моря
- URL: https://journals.eco-vector.com/0030-1574/article/view/657627
- DOI: https://doi.org/10.31857/S0030157423020156
- EDN: https://elibrary.ru/MAWHPW
- ID: 657627
Cite item
Full Text
Abstract
This paper is a continuation of the authors’ research [5]. We apply some aspects of the theory about strong horizontal stretching of large-scale mesoscale eddies in the World ocean based on ‘the ellipsoidal eddies’ theory to the ocean conditions. Two areas are considered, characterized by increased eddy manifestation. They are the Lofoten Basin in the Norwegian Sea and the Agulhas Current area. We also discuss the condition of the Atlantic Ocean and the World Ocean. The main purpose of this paper is to check the feasibility of the physical conditions for unbounded eddy elongation in the real ocean and estimate the fraction of mesoscale ocean eddies that are elongating into filaments and redistributing energy from the mesoscale to the submesoscale. We estimate the share of eddies in the World Ocean that are strongly elongated. We propose the maps of the geographical location of unlimited eddy elongation zones and give the interpretation of the obtained results. We also describe the effect of a decrease in the vortices’ self-energy due to the tensile action of the background flow. We suppose that it is a possible mechanism for energy transfer from the vortex to the flow and a manifestation of the negative viscosity effect.
About the authors
V. V. Zhmur
Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); Saint Petersburg State University
Author for correspondence.
Email: zhmur-vladimir@mail.ru
Russia, 117997, Moscow, 36 Nahimovskiy prospect; Russia, 141701, Moscow Region, Dolgoprudny, 9 Institutskiy per.; Russia, 199034, St. Petersburg, 7–9 Universitetskaya nab.
T. V. Belonenko
Saint Petersburg State University
Email: zhmur-vladimir@mail.ru
Russia, 199034, St. Petersburg, 7–9 Universitetskaya nab.
E. V. Novoselova
Saint Petersburg State University
Email: zhmur-vladimir@mail.ru
Russia, 199034, St. Petersburg, 7–9 Universitetskaya nab.
B. P. Suetin
Moscow Institute of Physics and Technology (National Research University)
Email: zhmur-vladimir@mail.ru
Russia, 141701, Moscow Region, Dolgoprudny, 9 Institutskiy per.
References
- Белоненко Т.В., Колдунов А.В., Сентябов Е.В., Карсаков А.Л. Термохалинная структура Лофотенского вихря Норвежского моря на основе экспедиционных исследований и по данным гидродинамического моделирования // Вестник СПбГУ. Науки о Земле. 2018. Т. 63. № 4. С. 502–519. https://doi.org/10.21638/spbu07.2018.406
- Голицын Г.С. Вероятностные структуры макромира: землетрясения, ураганы, наводнения. М.: Физматлит, 2021. 175 с.
- Жмур В.В. Мезомасштабные вихри океана. Москва: ГЕОС, 2011. 384 с.
- Жмур В.В., Арутюнян Д.А. Перераспределение энергии с мезо- в субмезомасштаб при горизонтальном вытягивании синоптических вихрей океана неоднородными баротропными течениями // Океанология. 2022 (в печати).
- Жмур В.В., Белоненко Т.В., Новоселова Е.В., Суетин Б.П. Условия трансформации мезомасштабного вихря в субмезомасштабную вихревую нить при вытягивании его неоднородным баротропным течением // Океанология. 2022 (в печати).
- Жмур В.В., Новоселова Е.В., Белоненко Т.В. Потенциальная завихренность в океане: подходы Эртеля и Россби с оценками для Лофотенского вихря // Известия РАН. Физика атмосферы и океана. 2021. Т. 57. № 6. С. 721–732. https://doi.org/10.31857/S0002351521050151
- Жмур В.В., Новоселова Е.В., Белоненко Т.В. Особенности формирования поля плотности в мезомасштабных вихрях Лофотенской котловины. Часть 2 // Океанология. 2022. Т. 62 № 3. С. 341–356. https://doi.org/10.31857/S0030157422030170
- Жмур В.В., Травкин В.С., Белоненко Т.В., Арутюнян Д.А. О трансформации кинетической и потенциальной энергии при вытягивании мезомасштабного вихря // Морской гидрофизический журнал. 2022 (в печати).
- Жмур В.В., Щепеткин А.Ф. Взаимодействие двух бароклинных вихрей. Тенденция к сближению и слиянию // Известия РАН. Физика атмосферы и океана. 1992. Т. 28. № 5. С. 538–551.
- Зинченко В.А., Гордеева С.М., Собко Ю.В., Белоненко Т.В. Мезомасштабные вихри Лофотенской котловины по спутниковым данным // Фундаментальная и прикладная гидрофизика. 2019. Т. 12. № 3. С. 46–54. https://doi.org/10.7868/S2073667319030067
- Малышева А. А., Белоненко Т. В., Яковлева Д. А. Характеристики двух вихрей различной полярности в течении Агульяс // Ученые записки РГГМУ. 2022 (в печати).
- Малышева А.А., Колдунов А.В., Белоненко Т.В., Сандалюк Н.В. Вихри Агульясова переноса по данным спутниковой альтиметрии // Ученые записки РГГМУ. 2018. № 52. С. 154–170.
- Старр В. Физика явлений с отрицательной вязкостью. М.: Мир, 1971. 260 с.
- Травкин В.С., Белоненко Т.В. Исследование вихревой изменчивости в Лофотенской котловине на основе анализа доступной потенциальной и кинетической энергии // Морской гидрофизический журнал. 2021. Т. 37. № 3. С. 318–332. https://doi.org/10.22449/0233-7584-2021-3-318-332
- Травкин В.С., Жмур В.В., Белоненко Т.В. Вклад мезомасштабных вихрей Лофотенской котловины в ее энергетику // Российский журнал наук о Земле. 2022. Т. 22. С. ES4002. https://doi.org/10.2205/2022ES000802
- Belonenko T.V., Travkin V.S., Koldunov A.V., Volkov D.L. Topographic experiments over dynamical processes in the Norwegian Sea // Russian Journal of Earth Sciences. 2021. V. 21. P. ES1006. https://doi.org/10.2205/2020ES000747
- Belonenko T.V., Zinchenko V.A., Fedorov A.M. et al. Interaction of the Lofoten Vortex with a satellite cyclone // Pure and Applied Geophysics. 2021. V. 178. P. 287–300. https://doi.org/10.1007/s00024-020-02647-1
- Fedorov A.M., Belonenko T.V. Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database // Russian Journal of Earth Sciences. 2020. V. 20. P. ES2002. https://doi.org/10.2205/2020ES000694
- Gnevyshev V.G., Malysheva A.A., Belonenko T.V., Koldunov A.V. On Agulhas eddies and Rossby waves travelling by forcing effects // Russian Journal of Earth Sciences. 2021. V. 21. № 5. P. ES6003. https://doi.org/10.2205/2021ES000773
- Gordeeva S.M., Zinchenko V.A., Koldunov A.V. et al. Statistical analysis of long-lived mesoscale eddies in the Lofoten basin from satellite altimetry // Advances in Space Research. 2020. V. 68. № 2. P. 364–377. https://doi.org/10.1016/j.asr.2020.05.043
- Griffiths R.W., Hopfinger E.J. Coalescing of geostrophic vortices // Journal of Fluid Mechanics. 1987. № 178. P. 73–97.
- Kida S. Motion of an elliptic vortex in uniform shear flow // Journal of the Physical Society of Japan. 1981. V. 50. № 10. P. 3517–3520.
- Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences // Deep Sea Research and Oceanographic Abstracts. 1970. V. 17. № 3. P. 445–454. https://doi.org/10.1016/0011-7471(70)90059-8
- Sandalyuk N.V., Belonenko T.V. Three-dimensional structure of the mesoscale eddies in the Agulhas Current region from hydrological and altimetry data // Russian Journal of Earth Sciences. 2021. V. 21. № 4. P. ES4005. https://doi.org/10.2205/2021ES000764
- Sandalyuk N.V., Bosse A., Belonenko T.V. The 3-D structure of mesoscale eddies in the Lofoten Basin of the Norwegian Sea: a composite analysis from altimetry and in situ data // Journal of Geophysical Research: Oceans. 2020. V. 125. № 10. P. e2020JC016331. https://doi.org/10.1029/2020JC016331
- Travkin V.S., Belonenko T.V., Budyansky M.V. et al. Quasi-permanent mushroom-like dipole in the Lofoten Basin // Pure and Applied Geophysics. 2022. V. 179. № 1. P. 465–482. https://doi.org/10.1007/s00024-021-02922-9
- Weiss J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics // Physica D: Nonlinear Phenomena. 1991. V. 48. № 2–3. P. 273–294. https://doi.org/10.1016/0167-2789(91)90088-Q
- Zhmur V.V., Novoselova E.V., Belonenko T.V. Peculiarities of formation of the density field in mesoscale eddies of the Lofoten Basin: Part 1 // Oceanology. 2021. V. 61. № 6. P. 830–838. https://doi.org/10.1134/S0001437021060333
Supplementary files
