Wind drift, breakdown and pilling up of the ice field fragments

Cover Page

Cite item

Full Text

Abstract

The article contains mathematical model of the wind drift of the ice field, which allows to estimate the drift speed depending on the wind speed and the size of the ice field, as well as the kinetic energy of the ice field that will be released after it collide with a fixed obstacle, and cause brittle fracture and the formation of fragments that forms piles in front of stationary offshore structures. The basis for the study was the assumption that the effect of wind and water mass on the ice field can be described by methods used in aerodynamics and theory of ship. The model of the process of ice pile formation and the estimation of its dimensions were based on the assumption that all kinetic energy of the ice field is spent on its brittle breakdown, and the formation of the ice fragments pile occurs according to the same laws as in natural accumulations of ice fragments: hummock ridges and stamukhs. The created model and results of computer modelling can be applied for practical assessments and forecast of the dimensions of the ice computer simulation made it possible to relate the size of the pile of ice fragments near stationary platforms and terminals in the Arctic seas and other ice infested seas.

About the authors

V. K. Goncharov

Saint Petersburg State Marine Technical University

Author for correspondence.
Email: vkgonch@mail.ru
Russian Federation, Saint Petersburg

References

  1. Астафьев В.Н., Сурков Г.А., Трусков П.А. Торосы и стамухи Охотского моря. СПб: Пресс-Погода, 1997. 197 с.
  2. Бушуев А.В., Волков Н.А., Лощилов В.С. Атлас ледовых образований. Л.: Гидрометеоиздат, 1974. 140 с.
  3. Войткунский Я.И. Сопротивление воды движению судов. Л.: Судостроение, 1988. 288 с.
  4. Гончаров В.К. Ветровой дрейф и разрушение ледового поля // Труды Санкт-Петербургского государственного морского технического университета (СПбГМТУ). 2022. Вып. 4(4). С. 14–26.
  5. Гончаров В.К., Пяткин В.А. Исследование взаимодействия ледовых полей с неподвижной преградой // Морские интеллектуальные технологии. 2020. Т. 3. № 1. С. 66–71. Doi.org 10.37220/MIT.2020.47.1.039.
  6. Доронин Ю.П. Физика океана. СПб: Изд. РГГМУ, 2000. 340 с.
  7. Доронин Ю.П., Хейсин Д.Е. Морской лед. Л.: Гидрометеоиздат, 1975. 320 с.
  8. Жуков Л.А. Общая океанология. Л.: Гидрометеоиздат, 1976. 376 с.
  9. Леонтьев О.К., Рычагов Г.И. Общая геоморфология (Учебное пособие) М.: Высшая школа, 1979. 287 с.
  10. Объединенная судостроительная корпорация. Пресс-центр. Новости, 4 марта 2022 г. https://www.aoosk.ru/press-center/news/na-platforme-prirazlomnaya-dobyto-bolee-19-mln-tonn-nefti/.
  11. Фабрикант Н.Я. Аэродинамика. Общий курс. М.: Наука, 1964. 816 с.
  12. Харитонов В.В., Бородкин В.А. Методика исследования стамух // Материалы докладов XIII Общероссийской научно-практической конференции и выставки “Перспективы развития инженерных изысканий в строительстве в Российской Федерации”, 2017. С. 216–223.
  13. Хейсин Д.Е., Лихоманов В.А., Курдюмов В.А. Определение удельной энергии разрушения и контактных давлений при ударе твердого тела о лед // Труды ААНИИ. 1975. Т. 326. С. 210–218.
  14. Цуприк В.Г. Теоретические исследования удельной энергии механического разрушения морского льда // Вестник Новосибирского государственного университета. Серия: Математика, механика, информатика. 2013. Т. 13. № 2. С. 119–125.
  15. Bridges R., Riska K., Hopkins M., Wei Y. Ice interaction process during ice encroachment // Marine Structures. 2019. V. 67. 102629. https://doi.org/10.1016/j.marstruc.2019.05.007
  16. Dawson T.H. Offshore structural engineering. Leningrad: Sudostroenie. 1986. 288 p.
  17. Dong J., Li Zh., Lu P. et al. Design ice loads for piles subjected to ice impact // Cold Regions Science and Technology. 2012. V. 71. P. 34–43.
  18. Goncharov V.K. Wind drift and breakdown of the ice field // 26th IAHR International Symposium on Ice (IAHR-22). Montreal, Canada. 2022. Paper 79. 11 p.
  19. Goncharov V.K. Wind drift and pile up of the ice field // Journal of Marine Science and Engineering. 2023. V. 11. № 6. 13 p. https://doi.org/10.3390/jmse11061227
  20. Goncharov V.K., Klementieva N. Yu., Li Z. et al. Effective forces on the grounded hummock and piled ice // Proceeding of the 19th International Conference on Port and Ocean Engineering Under Arctic Condition “Recent Development of Offshore Engineering in Cold Regions”, POAC’2007. China. 2007. V. 2. P. 735–746.
  21. Hoyland K.V. Ice ridge characteristics and engineering concerns regarding ice ridges // Cold Region Science and Marine Technology (EOLSS). 2012. V. 1. Chapter 29. 19 p.
  22. Leppäranta M. The drift of Sea Ice. Springer-Berlin, Heidelberg. Germany. 2011. 350 p.
  23. Marchenko A. Modelling of ice piling up near offshore structures // Proceedings of the 20th IAHR International Symposium on Ice. Finland. 2010. 14 p.
  24. Patil A., Sand B., Fransson L., Daiyan H. Constitutive models for sea ice rubble in first year ridges: a literature review // Proceedings of the 21st IAHR International Symposium on Ice. Dalian, China. 2012. P. 623–638.
  25. Peyton H.R. Sea ice strength // Report NNR307–247. Geophysical Institute. University of Alaska. 1966. 273 p.
  26. Sand B., Bonath V., Sudom D., Petrich C. Three year of measurements of the first-year ridges in the Barents Sea and Fram Strait // Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC’15. Norway. 2015. 11 p. https://www.poac.com/PapersOnline.html732–742
  27. Sudom D., Timco G., Sand B., Fransson L. Analysis of first-year and old ice ridge characteristics // Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC’2011. Canada. 2011. V. 1. P. 732–742. https://doi.org/10.4224/23004497

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences