Behavior modes of a quasi-geostrophic ellipsoidal vortex in a horizontal flow with vertical shear
- 作者: Harutyunyan D.A.1, Zhmur V.V.1,2
-
隶属关系:
- Moscow Institute of Physics and Technology (National Research University)
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- 期: 卷 65, 编号 4 (2025)
- 页面: 548-568
- 栏目: Физика моря
- URL: https://journals.eco-vector.com/0030-1574/article/view/692399
- DOI: https://doi.org/10.31857/S0030157425040024
- ID: 692399
如何引用文章
详细
The paper addresses the problem of the behaviour modes of baroclinic geostrophic vortices with ellipsoidal-shaped cores in horizontal flows with a vertical shift. In such flows, the vortex core is confined between two stationary horizontal planes, which the vortex touches at its upper and lower points. Under the influence of the background flow, the lengths of all the axes of the ellipsoid can change, and the angles of orientation of the vortex in space also change. The authors identify three modes of vortex behaviour. The first mode is the survival mode of the vortex in a shear flow, where the vortex undergoes finite oscillations of the semi-axes for an indefinite period of time and may exhibit complex behaviour in terms of its orientation angles. This mode corresponds to strong vortices. In the second mode, the vortex is stretched along the flow from the very beginning, remaining with finite horizontal dimensions perpendicular to the flow and compressed vertically. This is the destruction mode of the vortex by the flow, where the final result is the formation of a thin vertical structure of the ocean from the vortex. Weak vortices undergo this type of evolution. This mode is referred to as the “unlimited stretching mode.” Finally, there is a third mode, called the “finite lifetime mode,” in which, for a finite period of time, the vortex behaves similarly to the survival mode (its shape is finitely deformed, and the vortex rotates or oscillates in space), but eventually, the vortex stretches indefinitely in a manner similar to the destruction mode. The authors have delineated the regions of existence for each mode on a dimensionless parameter plane of the problem and determined the boundaries separating the above-mentioned modes of vortex behaviour.
作者简介
D. Harutyunyan
Moscow Institute of Physics and Technology (National Research University)
Email: arutyunyan.da@phystech.su
Долгопрудный, Россия
V. Zhmur
Moscow Institute of Physics and Technology (National Research University); Shirshov Institute of Oceanology, Russian Academy of SciencesДолгопрудный, Россия; Москва, Россия
参考
- Елкин Д.Н., Зацепин А.Г., Шварцман Д.Р. Предварительные результаты лабораторных исследований эволюции нефронтальных вихрей в двухслойной вращающейся жидкости // Океанологические исследования. 2023. Т. 51. № 1. С. 5–35.
- Жмур В.В. Мезомасштабные вихри в океане. М.: ГЕОС, 2011. 290 с.
- Жмур В.В., Белоненко Т.В., Новоселова Е.В., Суетин Б.П. Условия трансформации мезомасштабного вихря в субмезомасштабную вихревую нить при вытягивании его неоднородным баротропным течением // Океанология. 2023. Т. 63. № 2. С. 200–210. doi: 10.31857/S0030157423020144
- Жмур В.В., Белоненко Т.В., Новоселова Е.В., Суетин Б.П. Приложение к реальному океану теории трансформации мезомасштабного вихря в субмезомасштабную вихревую нить при вытягивании его неоднородным баротропным течением // Океанология. 2023. Т. 63. № 2. С. 211–223. https://doi.org/10.31857/S0030157423020156
- Жмур В.В., Панкратов К.К. Динамика эллипсоидального приповерхностного вихря в неоднородном потоке // Океанология. 1989. Т. 29. № 2. С. 205–211.
- Жмур В.В., Щепеткин А.Ф. Эволюция эллипсоидального вихря в стратифицированном океане в приближении f-плоскости // Изв. АН СССР. ФАО. 1991. Т. 27. № 5. С. 492–503.
- Зацепин А.Г., Кондрашов А.А., Корж А.О. и др. Субмезомасштабные вихри на кавказском шельфе Черного моря и порождающие их механизмы // Океанология. 2011. Т. 51. № 4. С. 592–605.
- Ламб Г. Гидродинамика. М.; Л.: Гостехиздат,1947. 928 с.
- Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, Главная редакция физико-математической литературы, 1977. 5-е изд. 736 с.
- Чаплыгин С.А. Собрание сочинений. Т. 2. М: Гостехиздат, 1948. 643 с.
- Bane J.M., O’Keefe L.M., Watts D.R. Mesoscale eddies and submesoscale coherent vortices: their existence near and interaction with the Gulf Stream // Mesoscale/Synoptic Coherent Structures In Geophysical Turbulence. Elsevier Ocean0graphy Series, 50. Elselvier. Amsterdam – Oxford – N.Y. – Tokio, 1989. P. 501–518.
- Chaplygin S.A. On a pulsating cylindrical vortex // Trans. Phys. Sect. Imperial Moscow Soc. Friends of Natural Sciences. 1989. V. 10. № 1. P. 13–22.
- Dritsche, D.G., Reinaud J.N., McKiver W.J. The quasi-geostrophic ellipsoidal vortex model // Journal of Fluid Mechanics. 2004. V. 505. P. 201–223.
- Kida S. Motion of an elliptic vortex in uniform shear flow // J. Phys. Soc. Japan. 1981. 50(10). P. 3517–3520.
- Kirchhoff G. Vorlesungen über matematische Physic: Mechanik. Teubner, Leipzig. 1876. 466 p.
- McKiver W.J., Dritschel D.G. (2003) The motion of a fluid ellipsoid in a general linear background flow // Journal of Fluid Mechanics. 2003. V. 474. P. 147–173. https://doi.org/10.1017/S0022112002002859
- McKiver W.J., Dritschel D.G. The stability of a quasi-geostrophic ellipsoidal vortex in a background shear flow // Journal of Fluid Mechanics. 2006. V. 560. P. 1–17.
- McKiver W.J., Dritschel G.G. Balanced solutions for an ellipsoidal vortex in a rotating stratified flow // Journal of Fluid Mechanics. 2016. V. 802. P. 333–358. https://doi.org/10.1017/jfm.2016.462.
- Meacham S.P., Pankratov K.K., Shchepetkin A.F., Zhmur V.V. The interaction of ellipsoidal vortices with background shear flows in a stratified fluid // Dynamics of Atmospheres and Oceans. 1994. V. 21. № 2–3. P. 167–212. https://doi.org/10.1016/0377-0265(94)90008-6
- Polvani L.M., Flierl G.R. Generalized Kirchhoff vortices // Phys. Fluids. 1986. V. 29. P. 2376–2379. https://doi.org/10.1063/1.865530
- Zhmur V.V., Pankratov K.K. Dynamics of desingularized quasigeostrophic vortices // Physics of Fluids A: Fluid Dynamics. 1991. V. 3. № 5. P. 1464–1464. https://doi.org/10.1063/1.857998
补充文件
