Sedimentological Effect of Noto Tsunami in the Conditions of Ice Cover on the Coast of the Japan Sea

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The Noto tsunami inundation zone was surveyed in the field in Preobrazheniye Bay (Eastern Primorye) in late January and April 2024. Before the tsunami, the inner part of the bay began to freeze, forming fast ice and drift ice. Despite the low wave height and run-up (20–60 cm according to the results of tacheometric survey), an extensive silt-pelitic mud sheet was formed in the bay on unbroken fast ice and strongly consolidated ice, and covered the shore in the head of the bay (from 1.5 to 26 m). The total length of the silt sheet was 325 m. The tsunami penetrated along the frozen stream up to 680 m from the mouth, and the mud sheet and patches were encountered up to 250 m. Features of wave propagation were recorded by the position of grass blades, Zostera rollers and algal scraps. The grain size composition of mud and biofossils (diatoms and benthic foraminifera) were studied. Changes in grain size and ecological groups of biofossils along the profiles were analyzed. Epiphytes predominate among the diatoms. Benthic foraminifera are mainly represented by agglutinating forms. The source of the material was the littoral and sublittoral, where active erosion of bottom sediments by water saturated with ice floes took place. The implications of the results for paleotsunami searches are discussed.

Texto integral

Acesso é fechado

Sobre autores

N. Razzhigaeva

Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nadyar@tigdvo.ru
Rússia, Vladivostok

D. Tyunyatkin

Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

L. Ganzey

Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

T. Grebennikova

Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

E. Ivanova

Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

Yu. Putintsev

Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

Yu. Zhabyko

Primorsky Administration for Hydrometeorology and Environmental Monitoring

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

D. Shpachuk

Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences; Far East Regional Hydrometeorological Research Institute

Email: nadyar@tigdvo.ru
Rússia, Vladivostok; Vladivostok

E. Stasyuk

Far East Regional Hydrometeorological Research Institute

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

Bibliografia

  1. Веркулич С.З., Пушина З.В., Дорожкина М.В. и др. Характеристика природных условий формирования отложений интерстадиала (МИС 3) острова Кинг Джордж (западная Антарктика) на основе изучения ископаемых диатомовых комплексов // Проблемы Арктики и Антарктики. 2015. № 4. С. 109–119.
  2. Вопросы биогеографии и экологии фораминифер / Отв. ред. чл.-кор. АН БССР А.В. Фурсенко. Новосибирск: Наука, 1973. 224 с.
  3. Ганзей Л.А., Разжигаева Н.Г., Нишимура Ю. и др. Проявление палеоцунами в позднем голоцене на побережье бухты Триозерье, Японское море // Успехи современного естествознания. 2016. № 8. С. 166–172.
  4. Ганзей Л.А., Разжигаева Н.Г., Нишимура Ю. и др. Осадки исторических и палеоцунами на побережье Восточного Приморья // Тихоокеанская геология. 2015. № 1. С. 79–95.
  5. Гусяков В.К., Махинов А.Н. Масштабный природный катаклизм (оползень и цунами) 11 декабря 2018 года в Бурейском водохранилище // Геодинамика, геомеханика и геофизика. Материалы XIX Всероссийской конференции. Новосибирск: ИНГиГ СО РАН, 2019. С. 213–215.
  6. Кайстренко В.М., Шевченко Г.В., Ивельская Т.Н. Проявление цунами Тохоку 11 марта 2011 года на Российском тихоокеанском побережье // Вопросы инженерной сейсмологии. 2011. Т. 38. № 1. С. 41–64.
  7. Куркин А.А., Пелиновский Е.Н., Чой Б.Х., Ли Д.С. Сравнительная оценка цунамиопасности Япономорского побережья России на основе численного моделирования // Океанология. 2004. Т. 44. № 2. С. 179–188.
  8. Лоция северо-западного берега Японского моря. 1984. 319 с.
  9. Пинегина Т.К. Новые данные об Усть-Камчатском землетрясении 14 апреля 1923 г. по результатам палеосейсмологических исследований // Материалы XXVI ежегодной научной конференции, посвященной Дню вулканолога. Петропавловск-Камчатский, 2023. С. 100–103.
  10. Пинегина Т.К., Кожурин А.И., Пономарева В.В. Оценка сейсмической и цунамиопасности для поселка Усть-Камчатск (Камчатка) по данным палеосейсмологических исследований // Вестн. КРАУНЦ. Науки о Земле. 2012. № 1. Вып. 19. С. 138–159.
  11. Полякова А.М. Цунами в Приморье 26 мая 1983 года и его последствия. Владивосток: ТОИ ДВНЦ СССР, 1988. 40 с.
  12. Разжигаева Н.Г., Ганзей Л.А., Гребенникова Т.А. и др. Осадки Тохоку цунами 11 марта 2011 года на Южных Курилах: состав и биофоссилии // Океанология. 2014. Т. 54. № 3. С. 406–418.
  13. Растения и животные Японского моря: краткий атлас-определитель. Владивосток: ДВГУ, 2007. 488 с.
  14. Рябушко Л.И. Диатомовые водоросли (Bacillariophyta) залива Восток Японского моря. Биота и среда заповедников Дальнего Востока // Biodiversity and Environment of Far East Reserves. 2014. № 2. С. 4–17.
  15. Соловьев С.Л. Основные данные о цунами на Тихоокеанском побережье СССР, 1737–1976 гг. // Изучение цунами в открытом океане. М.: Наука, 1978. С. 61–128.
  16. Соловьев С.Л., Ферчев М.Д. Сводка данных о цунами в СССР // Бюл. совета по сейсмологии. Проблема цунами. 1961. № 9. С. 23–55.
  17. Фораминиферы дальневосточных морей СССР / А.В. Фурсенко, Т.С. Троицкая, Л.К. Левчук и др.; отв. ред. д-р г.- м. наук В.И. Гудина. Новосибирск: Наука, 1979. 398 с.
  18. Цой И.Б., Моисеенко И.А. Кремнистые микроводоросли в поверхностных осадках залива Петра Великого и прилегающей части Японской котловины // Вестн. ДВО РАН. 2013. № 6. С. 180–188.
  19. Chiba T., Nishimura Y. Tsunami deposits associated with the 1983 Nihonkai-Chubu earthquake tsunami in coastal forests near Happo Town, Akita Prefecture, Japan // Earth, Planets and Space. 2022. V. 74. P. 133.
  20. Dawson A.G., Shi S. Tsunami deposits // Pure Appl. Geophys. 2000. V. 157. P. 875–897.
  21. Dura T., Hemphill-Haley E. Diatoms in tsunami deposits // Geological Records of Tsunamis and Other Extreme Waves. Amsterdam: Elsevier, 2020. P. 291–322.
  22. Foraminifera Database. https://foraminifera.eu/ (дата обращения 03.07.2024 г.)
  23. Fujii Y., Satake K. Slip distribution of the 2024 Noto Peninsula earthquake (M JMA 7.6) estimated from tsunami waveforms and GNSS data // Earth, Planets and Space. 2024. V. 76. P. 44.
  24. Goto K., Ishizawa T., Ebina Y. et al. Ten years after the 2011 Tohoku-oki earthquake and tsunami: Geological and environ-mental effects and implications for disaster policy changes // Earth Sci Rev. 2021. V. 212. P. 103417.
  25. Goto T., Satake K., Sugai T. et al. Historical tsunami and storm deposits during the last five centuries on the Sanriku coast // Japan Marine Geology. 2015. V. 367. P. 105–117.
  26. Kaistrenko V., Razjigaeva N., Kharlamov A., Shishkin A. Manifestation of the 2011 Great Tohoku tsunami on the Kuril Island coast: Tsunami with Ice // Pure and Applied Geoph. 2013. V. 170. № 6–8. P. 1103–1114.
  27. Krammer K., Lange-Bertalot H. Bacillariophyceae. Teil 1. Naviculaceae. Jena: VEB Gustav Fischer Verlag, 1986. 876 p.
  28. Loeblich Jr. A.R., Tappan H. Foraminiferal genera and their classification. Van Nostrand Reinhold; New York, 1988. 869 p.
  29. Minoura K., Gusiakov V., Kurbatov A. et al. Tsunami sedimentation associated with the 1923 Kamchatka earthquake // Sedimentary Geology. 1996. V. 106. № 1–2. P. 145–154.
  30. Murray J.W. Ecology and Applications of Benthic Foraminifera. Cambridge: Cambridge University Press, 2006. 426 p.
  31. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A. et al. Coastal sedimentation associated with the Tohoku tsunami of 11 March 2011 in South Kuril Islands, NW Pacific Ocean // Pure and Applied Geoph. 2013. V. 170. № 6–8. P. 1081–1102.
  32. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A. et al. The Tohoku Tsunami of 11 March 2011: The Key Event to Understanding Tsunami Sedimentation on the Coasts of Closed Bays of the Lesser Kuril Islands // Pure Applied Geoph. 2014. V. 171. № 12. P. 3307–3328.
  33. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A. et al. Historical tsunami records on Russian Island, the Sea of Japan // Pure and Applied Geophysics. 2018. V. 175. № 4. P. 1507–1523.
  34. Salaree A., Okal E.A. The “Tsunami Earthquake” of 13 April 1923 in Northern Kamchatka: Seismological and Hydrodynamic Investigations // Pure and Applied Geoph. 2018. V. 175. P. 1257–1285.
  35. Suppasri A., Kitamura M., Alexander D. et al. The 2024 Noto Peninsula Earthquake: Preliminary observations and lessons to be learned // International J. of Disaster Risk Reduction. 2024. V. 110. P. 104611.
  36. The historical tsunami database. National Geographical data center. http://www.ngdc.noaa.gov/hazard/tsu.shtml (дата обращения 04.07.2024 г.).
  37. The World Foraminifera Database. https://www.marinespecies.org/foraminifera/ (дата обращения 03.07.2024 г.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Research area: a - position of the work area in the Japanese Sea region with the foci of historical tsunamis; b - Sokolovskaya and Preobrazheniya bays with the area where the Noto tsunami inundation zone was surveyed; c - kut part of the Preobrazheniya bay with observation points (ts. d - northern side of the bay and bottom with linear traces of erosion; e - tsunami inundation zone along the watercourse, arrows show the boundaries of the sedimentation zone and maximum splash.

Baixar (2MB)
3. Fig. 2. Change of ice conditions: a - before (01.01.2024, 02:01 UTC) and b - after the Noto tsunami (6.01.2024, 02:01 UTC). Ice situation - according to data of the Far Eastern Centre of FNBU ‘SIC Planeta’.

Baixar (432KB)
4. Fig. 3. Noto tsunami inundation zone in the Bay of Transfiguration. Transformations (a-e - in January, g-m - in April 2024. ): a - kut part of the bay, silt cover and ice floes on landfast ice; b - sediment cover and overlying ice in the inundation zone; c - inverted ice floe with frozen sediment; d - ice floe with abundance of frozen zostera in the foreground; e - ice floes transported by the tsunami to the mouth of the watercourse; f - inundation zone with ice floes and silt patches along the watercourse channel; g - inundation area on the northern side of the bay with a cover and silt stains, the lying grass shows the direction of forward and reverse flows; h - silt cover on the grass near the cut-off; i - silt stain at the place of melted ice floe; j - traces of a counterclockwise whirlpool; e - inundation area on the southern side of the bay; m - boundary of the maximum splash near the bridge over the watercourse (t. n. 436).

Baixar (3MB)
5. Fig. 4. Granulometric characteristics of tsunamigenic sediments in Preobrazheniya Bay. a-e - typical particle size distribution curves and cumulative curves; a-c - tsunamigenic mud, cover on the landfast ice and shore of the bay; d - tsunamigenic mud at the boundary of the sedimentation zone on the watercourse ice; e-e - littoral sediments; g - variation of the mean particle size (Ma), pelite and fine sand fraction content along the profile on the landfast ice (ts. nos. 364-350, inundation zone on the shore (ts. nos. 349-346 and on the watercourse ice). n. 364-350), flood zone on the shore (t. n. 349-346) and on the watercourse ice (t. n. 375-377). Fractional contents: 1 - < 10 µm, 2 - 100-250 µm; h - Passeg diagram for tsunamigenic muds of the bay. Transformation (Noto tsunami, 2024) and closed bays of Shikotan Island (Tohoku tsunami, 2024). Shikotan Island (Tohoku tsunami, 2011).

Baixar (825KB)
6. Fig. 5. Predominant species of diatom algae in the sediments of the Noto Tsunami in Preobrazheniya Bay. Preobrazheniya: a - 1 - profile across the inundation zone to the shore, 2 - profile from the estuary zone along the watercourse ice, 3 - profile on the northern side of the bay, 4 - in sediments transported by ice floes from the littoral. Photos of individual diatom species: b - Cocconeis scutellum Ehrenberg (27 × 18 µm); c - Diploneis interrupta (Kützing) Cleve (42 × 18 µm); d - Gomphonemopsis exigua (Kützing) Medlin (48 × 5.8 µm); e - Gomphonema exiguum var. minutissimum Grunow (11 × 2 µm); f - Petroneis granulata D.G. Mann (50 × 26 µm); g - Hyalodiscus subtilis Bailey (132 × 132 µm); h - Odontella aurita (Lyngbye) Agardh (32 × 12 µm); i - Tryblionella acuminata W. Smith (72 × 12 µm); j - Tryblionella punctata W. Smith (40 × 20 µm); k - Pseudogomphonema kamtchaticum (Grunow) Medlin (48 × 5.8 µm); l - Trigonium caelatum (Janisch) Mann (118 µm); m - Rhoicosphenia marina (Kützing) M. Schmidt (26 × 7. 5 µm); n - Paralia sulcata (Ehrenberg) Kützing (13 × 24 µm, colony); o - Halamphora coffeiformis (Agardh) Levkov (42 × 14 µm); p - Tryblionella plana (Smith) Pelletan (119 × 30 µm); q - Pinnularia quadratarea var. constricta (Østrup) Heiden (45 × 14 μm); r - Coscinodiscus oculus-iridis (Ehrenberg) Ehrenberg (14 × 10 μm, fragment); s - Cymbella angusta (Gregory) Gusliakov (49 × 9 μm); t - Tryblionella coarctata (Grunow) D.G. Mann (32 × 12 µm); u - Ardissonea formosa (Hantzsch) Grunow (50 × 13 µm, fragment); v - Planothidium delicatulum (Kützing) Round & Bukhtiyarova (Kützing) Round & Bukhtiyarova (22 × 8 µm).

Baixar (1MB)
7. Fig. 6. Ratio of total and relative content of benthic foraminifera species (a) and percentage of secreted and agglutinating forms (b) in tsunamigenic muds and sediments of the bay drainage of Bay Preobrazheniye

Baixar (434KB)

Declaração de direitos autorais © Russian academy of sciences, 2025