Quantum Computers and Ultracold Atoms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In recent years, the implementation of quantum computers advanced considerably. Despite the fact that a number of scientific and technical issues still prevent practical application of quantum computers, the current quantum processors allow to obtain interesting results. Superconducting qubits and ultracold ions are currently considered the most promising physical platforms for implementing quantum computing. At the same time, alternative physical systems, including ultracold neutral atoms, are also of great interest and potential. Nowadays, atomic systems are inferior to superconducting ones in terms of reproducibility of results and parameters, but at the same time they can be implemented in a laboratory without access to the most advanced achievements of modern microelectronics.

About the authors

I. I Beterov

Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University; Novosibirsk State University; Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences

Email: beterov@isp.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia; Novosibirsk, Russia; Novosibirsk, Russia

References

  1. Холево А.С. Некоторые оценки для количества информации, передаваемого квантовым каналом связи. Проблемы передачи информации. 1973; 9(3): 3–11.
  2. Bennett C.H. Logical reversibility of computation. IBM Journal of Research and Development. 1973; 17(6): 525–532. doi: 10.1147/rd.176.0525.
  3. Манин Ю.И. Вычислимое и невычислимое. М., 1980.
  4. Feynman R.P. Simulating physics with computers. International Journal of Theoretical Physics. 1982; 21: 467–488. doi: 10.1007/BF02650179.
  5. Анциферов В.В., Смирнов Г.И., Телегин Г.Г. О логических элементах квантово-механических компьютеров. Письма в журнал технической физики. 1995; 21(14): 43–46.
  6. Shor P.W. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (SFCS’94). IEEE Computer Society, USA, 1994; 124–134. doi: 10.1109/SFCS.1994.365700.
  7. Shor P.W. Scheme for reducing decoherence in quantum computer memory. Physical Review A. 1995; 52(4): R2493–R2496. doi: 10.1103/PhysRevA.52.R2493.
  8. Monroe C., Meekhof D.M., King B.E. et al. Demonstration of a fundamental quantum logic gate. Physical Review Letters. 1995; 75(25): 4714–4717. doi: 10.1103/PhysRevLett.75.4714.
  9. Arute F., Arya K., Babbush R. et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019; 574: 505–510. doi: 10.1038/s41586-019-1666-5.
  10. Preskill J. Quantum Computing in the NISQ era and beyond. Quantum. 2018; 2: 79–98. doi: 10.22331/q-2018-08-06-79.
  11. Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. М., 2006.
  12. Einstein A., Podolsky B., Rosen N. Can quantum-mechanical description of physical reality be considered complete? Physical Review. 1935; 47(10): 777–780.
  13. Bell J.S. On the Einstein Podolsky Rosen paradox. Physics. 1964; 1(3): 195–200.
  14. Deutsch D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society A. 1985; 400: 97–117. doi: 10.1098/rspa.1985.0070.
  15. Harris R., Johansson J., Berkley A.J. et al. Experimental demonstration of a robust and scalable flux qubit. Physical Review B. 2010; 81(13): 134510. doi: 10.1103/PhysRevB.81.134510.
  16. Rønnow T.F., Wang Z., Job J. et al. Defining and detecting quantum speedup. Science. 2014; 345: 420–424. doi: 10.1126/science.1252319.
  17. King A.D., Raymond J., Lanting T. et al. Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets. Nature Communications. 2021; 12: 1113. doi: 10.1038/s41467-021-20901-5.
  18. Preskill J. Quantum computing and the entanglement frontier. 2012. doi: 10.48550/arXiv.1203.5813.
  19. Neill C., Roushan P., Kechedzhi K. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science. 2018; 360: 195–199. doi: 10.1126/science.aao4309.
  20. Feng Pan, Pan Zhang. Simulation of quantum circuits using the big-batch tensor network method. Physical Review Letters. 2022; 128:030501. doi: 10.1103/PhysRevLett.128.030501.
  21. DiVincenzo D.P. Quantum computation. Science. 1995; 270: 255–261. doi: 10.1126/science.270.5234.255.
  22. Barends R., Quintana C.M., Petukhov A.G. et al. Diabatic gates for frequency-tunable superconducting qubits. Physical Review Letters. 2019; 123: 210501. doi: 10.1103/PhysRevLett.123.210501.
  23. Gaebler J.P., Tan T.R., Lin Y. et al. High-fidelity universal gate set for 9Be+ ion qubits. Physical Review Letters. 2016; 117: 060505. doi: 10.1103/PhysRevLett.117.060505.
  24. Jaksh D., Cirac J.I., Zoller P. et al. Fast quantum gates for neutral atoms. Physical Review Letters. 2000; 85: 2208-11. doi: 10.1103/PhysRevLett.85.2208.
  25. Letokhov V.S., Minogin V.G., Pavlik B.D. Cooling and trapping of atoms and molecules by a resonant laser field. Optics Communications. 1976; 19: 72–75. doi: 10.1016/0030-4018(76)90388-6.
  26. Chu S., Bjorkholm J.E., Ashkin A., Cable A. Experimental observation of optically trapped atoms. Physical Review Letters. 1986; 57(3):314–317. doi: 10.1103/PhysRevLett.57.314.
  27. Grimm R., Weidemüller M., Ovchinnikov Yu. Optical dipole traps for neutral atoms. Advances in Atomic, Molecular, and Optical Physics. 2000; 42: 95–170. doi: 10.1016/S1049-250X(08)60186-X.
  28. Nogrette F. et al. Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Physical Review X. 2014; 4: 021034. doi: 10.1103/PhysRevX.4.021034.
  29. Schlosser M., Tichelmann S., Kruse J. et al. Scalable architecture for quantum information processing with atoms in optical micro-structures. Quantum Information Processing. 2011; 10: 907. doi: 10.1007/s11128-011-0297-z.
  30. Saffman M., Walker T.G., Mølmer K. Quantum information with Rydberg atoms. Reviews of Modern Physics. 2010; 82: 2313. doi: 10.1103/RevModPhys.82.2313.
  31. Saffman M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. Journal of Physics B: Atomic Molecular and Optical Physics. 2016; 49(20): 202001. doi: 10.1088/0953-4075/49/20/202001.
  32. Рябцев И.И., Бетеров И.И., Третьяков Д.Б. и др. Спектроскопия холодных ридберговских атомов рубидия для применений в квантовой информатике. Успехи физических наук. 2016; 182(2): 206–219. doi: 10.3367/UFNe.0186.201602k.0206.
  33. Бетеров И.И., Якшина Е.А., Третьяков Д.Б. и др. Реализация однокубитовых квантовых операций с индивидуальной адресацией двух атомов рубидия в двух оптических дипольных ловушках. Квантовая электроника. 2021; 51(6): 464–472.
  34. Isenhower L., Urban E., Zhang X.L. et al. Demonstration of a neutral atom controlled-NOT quantum gate. Physical Review Letters. 2010; 104(1): 010503. doi: 10.1103/PhysRevLett.104.010503.
  35. Levine H., Keesling A., Semeghini G. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Physical Review Letters. 2019; 123(17): 170503. doi: 10.1103/PhysRevLett.123.170503.
  36. Zhuo Fu, Peng Xu, Yuan Sun et al. High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-phase gate. Physical Review A. 2022; 105: 042430. doi: 10.1103/PhysRevA.105.042430.
  37. Evered S.J., Bluvstein D., Kalinowski M. et al. High-fidelity parallel entangling gates on a neutral atom quantum computer. 2023. doi: 10.48550/arXiv.2304.05420.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies