Subwavelength Optics, or How to Observe what is “Forbidden” by Physical Laws

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Is it possible to manipulate an electromagnetic field pattern on a much smaller scale than the wavelength of the incident radiation? The answer is, Yes! It turns out that the solution to such a problem does not go against the principles of optics that limit the size of a light spot to half the wavelength of the incident radiation. We explain how to achieve this, and provide examples to illustrate the concept. We also discuss the latest applications of this new technique and its future potential.

About the authors

M. I Tribelsky

Lomonosov Moscow State University

Email: tribelsky@polly.phys.msu.ru
Moscow, Russia

References

  1. Schrödinger E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften. 1935; 23(48): 807–812. doi: 10.1007/BF01491891.
  2. Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie. 1873; 9: 413–468. doi: 10.1007/BF02956173.
  3. Helmholtz H., Fripp H. E. On the limits of the optical capacity of the microscope. Monthly Microscopical Journal. 1876; 16(1): 15–39. doi: 10.1111/j.1365-2818.1876.tb05606.x
  4. Strutt J. W. (Lord Rayleigh). On the light from the sky, its polarization and colour. Philosophical Magazine. Series 1. 1871; 41: 107–120.
  5. Kerker M. The Scattering of Light and Other Electromagnetic Radiation. 1969. doi: 10.1016/c2013-0-06195-6.
  6. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik. 1908; 330(3): 337–445. doi: 10.1002/andp.19083300302.
  7. Трибельский М. И. Резонансное рассеяние света малыми частицами. Журнал экспериментальной и теоретической физики. 1984; 86(3): 915–919.
  8. Лукьянчук Б. С., Трибельский М. И. Аномальное рассеяние света малыми частицами и обратная иерархия оптических резонансов. Памяти М. Н. Либенсона. Д. И. Раскин, Е. Б. Яковлев, Г. Д. Шандыбина (ред.). СПб., 2005; 101–117.
  9. Tribelsky M. I., Luk’yanchuk B. S. Anomalous light scattering by small particles. Physical Review Letters. 2006; 97(26): 263902. doi: 10.1103/PhysRevLett.97.263902.
  10. Трибельский М. И., Мирошниченко А. Е. Резонансное рассеяние электромагнитных волн малыми металлическими частицами: новый взгляд на старую проблему. Успехи физических наук. 2022; 192(1): 45–68. doi: 10.3367/UFNr.2021.01.038924.
  11. Bohren C. F. How can a particle absorb more than the light incident on it? American Journal of Physics. 1983; 51(4): 323–327. doi: 10.1119/1.13262.
  12. Tribelsky M. I., Miroshnichenko A. E. Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles. Physical Review A. 2016; 93(5): 053837. doi: 10.1103/PhysRevA.93.053837.
  13. Miroshnichenko A. E., Evlyukhin A. B., Yu F. Y. et al. Nonradiating anapole modes in dielectric nanoparticles. Nature Communications. 2015; 6: 8069. doi: 10.1038/ncomms9069.
  14. Зельдович Я. Б. Электромагнитное взаимодействие при нарушении четности. Журнал экспериментальной и теоретической физики. 1957; 33(5): 1531–1532.
  15. Tribelsky M. I., Miroshnichenko A. E., Kivshar Y. S. Unconventional Fano resonances in light scattering by small particles. Europhysics Letters. 2012; 97(4): 44005. doi: 10.1209/0295-5075/97/44005.
  16. Kapitanova P., Ternovski V., Miroshnichenko A. et al. Giant field enhancement in high-index dielectric subwavelength particles. Scientific Reports. 2017; 7: 731. doi: 10.1038/s41598-017-00724-5.
  17. Varian R. H., Varian S. F. A High frequency oscillator and amplifier. Journal of Applied Physics. 1939; 10: 321–327.
  18. Vogel A., Noack J., Hüttman G., Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Applied Physics B. 2005; 81: 1015–1047. doi: 10.1007/s00340-005-2036-6.
  19. Berns M. W. Laser scissors and tweezers to study chromosomes: A review. Frontiers in Bioengineering and Biotechnology. 2020; 8: 721. doi: 10.3389/fbioe.2020.00721.
  20. Loo C., Lowery A., Halas N. et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters. 2005; 5(4): 709–711. doi: 10.1021/nl050127s.
  21. Gu M., Zhang Q., Lamon S. Nanomaterials for optical data storage. Nature Reviews Materials. 2016; 1(12): 16070. doi: 10.1038/natrevmats.2016.70.
  22. Fan X., Zheng W., Singh D. J. Light scattering and surface plasmons on small spherical particles. Light: Science and Applications. 2014; 3: e179. doi: 10.1038/lsa.2014.60.
  23. Dadosh T., Sperling J., Bryant G. W. et al. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer. ACS Nano. 2009; 3(7): 1988–1994. doi: 10.1021/nn900422w.
  24. Kolloch A., Geldhauser T., Ueno K. et al. Femtosecond and picosecond near-field ablation of gold nanotriangles: nanostructuring and nanomelting. Applied Physics A. 2011; 104: 793–799. doi: 10.1007/s00339-011-6443-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies