Лауреаты Нобелевской премии 2021 года. По химии — Беньямин Лист и Дэвид МакМиллан

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В 2021 г. Нобелевская премия по химии присуждена профессорам Беньямину Листу из Института исследования угля Общества Макса Планка (Германия) и Дэвиду МакМиллану из Принстонского университета (США) за разработку асимметрического органокатализа — метода органического синтеза, основанного на применении в качестве катализаторов малых хиральных «безметальных» органических молекул (органокатализаторов). Преимуществом органокатализаторов перед металлокомплексными катализаторами и ферментами является их меньшая стоимость, простота в обращении и экологичность (зеленая химия). Метод открывает новые возможности для создания более эффективных и лишенных вредных побочных эффектов энантиомерно чистых лекарственных препаратов.

Об авторах

С. Г Злотин

Институт органической химии имени Н.Д. Зелинского РАН

Email: zlotin@ioc.ac.ru
Москва, Россия

Список литературы

  1. Vineyard B.D., Knowles W.S., Sabacky M.J. et al. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. J. Am. Chem. Soc. 1977; 99(18): 5946–5952. doi: 10.1021/ja00460a018.
  2. Noyori R., Hashiguchi S. Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes. Acc. Chem. Res. 1997; 30(2): 97–102. doi: 10.1021/ar9502341.
  3. Katsuki T., Sharpless K.B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 1980; 102(18): 5974–5976. doi: 10.1021/ja00538a077.
  4. Gao Y., Klunder J.M., Hanson R.M. et al. Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization. J. Am. Chem. Soc. 1987; 109(19): 5765–5780. doi: 10.1021/ja00253a032.
  5. Hajos Z.G., Parrish D.R. Asymmetric synthesis of optically active polycyclic organic compounds. German patent. 1971; DE 2102623.
  6. Eder U., Sauer G.R., Wiechert R. Optically active 1,5-indanone and 1,6-naphthalenedione derivatives. 1971; German patent DE 2014757.
  7. Hajos Z.G., Parrish D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 1974; 39(12): 1615–1621. doi: 10.1021/jo00925a003.
  8. Nigmatov A.G., Serebryakov E.P. Catalytic asymmetric synthesis of 6-substituted derivatives of 1,3-cyclohexadiene carboxylic acid. Russ. Chem. Bull. 1993; 42(1): 233–234. doi: 10.1007/BF00700021.
  9. Tu Y., Wang Z.-X., Shi Y. An efficient asymmetric epoxidation for trans-olefins mediated by a fructose derived ketone. J. Am. Chem. Soc. 1996; 118(40): 9806–9807. doi: 10.1021/ja962345g.
  10. Denmark S.E., Wu Z., Crudden C. et al. Catalytic epoxidation of alkenes with oxone. 2. Fluoro ketones. J. Org. Chem. 1997; 62(24): 8288–8289. doi: 10.1021/jo971781y.
  11. Yang D., Yip Y.-C., Tang M.-W. et al. A C2 symmetric chiral ketone for catalytic asymmetric epoxidation of unfunctionalized olefins. J. Am. Chem. Soc. 1996; 118(2): 491–492. doi: 10.1021/ja9529549.
  12. Sigman M.S., Jacobsen E.N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc. 1998; 120(19): 4901–4902. doi: 10.1021/ja980139y.
  13. Corey E.J., Grogan M.J. Enantioselective synthesis of α-amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst. Org. Lett. 1999; 1(1): 157–160. doi: 10.1021/ol990623l.
  14. List B., Lerner R.A., Barbas III C.F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000; 122(10): 2395–2396. doi: 10.1021/ja994280y.
  15. Hoffmann T., Zhong G., List B. et al. Aldolase antibodies of remarkable scope. J. Am. Chem. Soc. 1998; 120(12): 2768–2779. doi: 10.1021/ja973676b.
  16. Ahrendt K.A., Borths C.J., MacMillan D.W.C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels–Alder reaction. J. Am. Chem. Soc. 2000; 122(17): 4243–4244. doi: 10.1021/ja000092s.
  17. MacMillan D.W.C. The advent and development of organocatalysis. Nature. 2008; 455: 304–308. doi: 10.1038/nature07367.
  18. List B. The direct catalytic asymmetric three-component Mannich reaction. J. Am. Chem. Soc. 2000; 122(38): 9336–9337. doi: 10.1021/ja001923x.
  19. JenW.S., Wiener J.J.M., MacMillan D.W.C. New Strategies for Organic Catalysis: The First Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition. J. Am. Chem. Soc. 2000; 122(40): 9874–9875. doi: 10.1021/ja005517p.
  20. Melchiorre P., Marigo M., Carlone A. et al. Asymmetric Aminocatalysis — Gold Rush in Organic Chemistry. Angew. Chem. Int. Ed. 2008; 47(33): 6138–6171. doi: 10.1002/anie.200705523.
  21. List B., Pojarliev P., Martin H.J. Efficient Proline-Catalyzed Michael-Additions of Unmodified Ketones to Nitroolefins. Org. Lett. 2001; 3(16): 2423–2425. doi: 10.1021/ol015799d.
  22. List B. Direct Catalytic Asymmetric α-Amination of Aldehydes. J. Am. Chem. Soc. 2002; 124(20): 5656–5657. doi: 10.1021/ja0261325.
  23. Vignola N., List B. Catalytic Asymmetric Intramolecular α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2004; 126(2): 450–451. doi: 10.1021/ja0392566.
  24. Paras N.A., MacMillan D.W.C. The Enantioselective Organocatalytic 1,4-Addition of Electron-Rich Benzenes to α,β-Unsaturated Aldehydes. J. Am. Chem. Soc. 2002; 124(27): 7894–7895. doi: 10.1021/ja025981p.
  25. Paras N.A., MacMillan D.W.C. New Strategies in Organic Catalysis: The First Enantioselective Organocatalytic Friedel-Crafts Alkylation. J. Am. Chem. Soc. 2001; 123(18): 4370–4371. doi: 10.1021/ja015717g.
  26. Brown S.P., Goodwin N.C., MacMillan D.W.C. The First Enantioselective Organocatalytic Mukaiyama—Michael Reaction: A Direct Method for the Synthesis of Enantioenriched γ-Butenolide Architecture. J. Am. Chem. Soc. 2003; 125(5): 1192–1194. doi: 10.1021/ja029095q.
  27. J.W. Yang, Hechavarria Fonseca M.T., Vignola N., List B. Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of α,β-Unsaturated Aldehydes. Angew. Chem. Int. Ed. 2005; 44(1): 108–110. doi: 10.1002/anie.200462432.
  28. Ouellet S.G., Tuttle J.B., MacMillan D.W.C. Enantioselective Organocatalytic Hydride Reduction. J. Am. Chem. Soc. 2005; 127(1): 32–33. doi: 10.1021/ja043834gAaa.
  29. Jensen K.L., Dickmeiss G., Jiang H. et al. The Diarylprolinol Silyl Ether System: A General Organocatalyst. Acc. Chem. Res. 2012; 45(2): 248–264. doi: 10.1021/ar200149.
  30. Hayashi Y., Gotoh H., Hayashi T. et al. Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angew. Chem. Int. Ed. 2005; 44(27): 4212–4215. doi: 10.1002/anie.200500599.
  31. Wenzel A.G., Jacobsen E.N. Asymmetric catalytic Mannich reactions catalyzed by urea derivatives: enantioselective synthesis of β-aryl-β-amino acids. J. Am. Chem. Soc. 2002; 124(44): 12964–12965. doi: 10.1021/ja028353g.
  32. Malerich J.P., Hagihara K., Rawal V.H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2008; 130(44): 14416–14417. doi: 10.1021/ja805693p.
  33. Zhu Y., Malerich J.P., Rawal V.H. Squaramide-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroalkenes. Angew. Chem. Int. Ed. 2010; 49(1): 153–156. doi: 10.1002/anie.200904779.
  34. Akiyama T., Itoh J., Yokota K., Fuchibe K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brшnsted Acid. Angew. Chem. Int. Ed. 2004; 43(12): 1566–1568. doi: 10.1002/anie.200353240.
  35. Uraguchi D., Terada M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc. 2004; 126(17): 5356–5357. doi: 10.1021/ja0491533.
  36. Siyutkin D.E., Kucherenko A.S., Struchkova M.I., Zlotin S.G. A novel (S)-proline-modified task-specific chiral ionic liquid — an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Lett. 2008; 49(7): 1212–1216. doi: 10.1016/j.tetlet.2007.12.044.
  37. Tukhvatshin R.S., Kucherenko A.S., Nelyubina Y.V., Zlotin S.G. Tertiary Amine-Derived Ionic Liquid-Supported Squaramide as a Recyclable Organocatalyst for Noncovalent “On Water” Catalysis. ACS Catal. 2017; 7(4): 2981–2989. doi: 10.1021/acscatal.7b00562.
  38. Asymmetric Organocatalysis. B.List, K.Maruoka (eds.). Stuttgard; N.Y., 2012.
  39. García-García P., et al. A Powerful Chiral Counteranion Motif for Asymmetric Catalysis. Angew. Chem. Int. Ed. 2009; 48(24): 4363–4366. doi: 10.1002/anie.200901768.
  40. James T., van Gemmeren M., List B. Development and Applications of Disulfonimides in Enantioselective Organocatalysis. Chem. Rev. 2015; 115(17): 9388–9409. doi: 10.1021/acs.chemrev.5b00128.
  41. Prévost S., Dupré N., Leutzsch M. et al. Catalytic Asymmetric Torgov Cyclization: A Concise Total Synthesis of (+)-Estrone. Angew. Chem., Int. Ed. 2014; 53(33), 8770–8773. doi: 10.1002/anie.201404909.
  42. Mandrelli F., Blond A., James T. et al. Deracemizing α-Branched Carboxylic Acids by Catalytic Asymmetric Protonation of Bis-Silyl Ketene Acetals with Water or Methanol. Angew. Chem. Int. Ed. 2019; 58(33): 11479–11482. doi: 10.1002/anie.201905623.
  43. Kaib P.S.J., Schreyer L., Lee S. et al. Extremely Active Organocatalysts Enable a Highly Enantioselective Addition of Allyltrimethylsilane to Aldehydes. Angew. Chem. Int. Ed. 2016; 55(42): 13200–13203. doi: 10.1002/anie.201607828.
  44. Schreyer L., Properzi R., List B. IDPi Catalysis. Angew. Chem. Int. Ed. 2019; 58(37): 12761–12777. doi: 10.1002/anie.201900932.
  45. Jones S.B., Simmons B., MacMillan D.W.C. Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine. J. Am. Chem. Soc. 2009; 131(38): 13606–13607. doi: 10.1021/ja906472m.
  46. Jones S.B., Simmons B., Mastracchio A., MacMillan D.W.C. Collective synthesis of natural products by means of organocascade catalysis. Nature. 2011; 475: 183–188. doi: 10.1038/nature10232.
  47. Laforteza B.N., Pickworth M., MacMillan D.W.C. Enantioselective Total Synthesis of (–)-Minovincine in Nine Chemical Steps: An Approach to Ketone Activation in Cascade Catalysis. Angew. Chem. Int. Ed. 2013; 52(43): 11269–11272. doi: 10.1002/anie.201305171.
  48. Horning B.D., MacMillan D.W.C. Nine-Step Enantioselective Total Synthesis of (–)-Vincorine. J. Am. Chem. Soc. 2013; 135(17): 6442–6445. doi: 10.1021/ja402933s.
  49. Reiter M., Torssell S., Lee S. et al. The organocatalytic three-step total synthesis of (+)-frondosin B. Chem. Sci. 2010; 1(1): 37–42. doi: 10.1039/c0sc00204f.
  50. Jang H., Hong J. MacMillan D.W.C. Enantioselective organocatalytic singly occupied molecular orbital activation: the enantioselective α-enolation of aldehydes. J. Am. Chem. Soc. 2007; 129(22): 7004–7005. doi: 10.1021/ja0719428.
  51. Kim H., MacMillan D.W.C. Enantioselective organo–SOMO catalysis: the α-vinylation of aldehydes. J. Am. Chem. Soc. 2008; 130(2): 398–399. doi: 10.1021/ja077212h.
  52. Jui N.T., Garber J.A.O., Finelli F.G., MacMillan D.W.C. Enantioselective Organo-SOMO Cycloadditions: A Catalytic Approach to Complex Pyrrolidines from Olefins and Aldehydes. J. Am. Chem. Soc. 2012; 134(28): 11400–11403. doi: 10.1021/ja305076b.
  53. Conrad J.C., Kong J., Laforteza B.N., MacMillan D.W.C. Enantioselective α-Arylation of Aldehydes via Organo-SOMO Catalysis. An Ortho-Selective Arylation Reaction Based on an Open-Shell Pathway. J. Am. Chem. Soc. 2009; 131(33): 11640–11641. doi: 10.1021/ja9026902.
  54. Rendler S., MacMillan D.W.C. Enantioselective Polyene Cyclization via Organo-SOMO Catalysis. J. Am. Chem. Soc. 2010; 132(14): 5027–5029. doi: 10.1021/ja100185p.
  55. Shaw M.H., Twilton J., MacMillan D.W.C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016; 81(16): 6898–6926. doi: 10.1021/acs.joc.6b01449.
  56. Capacci A.G., Malinowski J.T., McAlpine N.J. et al. Direct, enantioselective α-alkylation of aldehydes using simple olefins. Nature Chem. 2017; 9: 1073-1077. doi: 10.1038/nchem.2797.
  57. Nacsa E.D., MacMillan D.W.C. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols. J. Am. Chem. Soc. 2018; 140(9): 3322–3330. doi: 10.1021/jacs.7b12768.
  58. Welin E.R., Warkentin A.A., Conrad J.C., MacMillan D.W.C. Enantioselective α-Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from β-Cyanoaldehydes. Angew. Chem. Int. Ed. 2015; 54(33): 9668–9672. doi: 10.1002/anie.201503789.
  59. Cecere G., König C.M., Alleva J.L., MacMillan D.W.C. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling. J. Am. Chem. Soc. 2013; 135(31): 11521–11524. doi: 10.1021/ja406181e.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство «Наука», 2021

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах