Where Is Titanium Hiding? Structure of a Potentially New Mineral from the Vesuvianite Group

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Minerals of the Vesuvianite group are complex ortho-diortho silicates of Са, Al, Fe, and some other elements. Vesuvianite with 5.85 wt. % of TiO2, from the Shigar Valley in northern Pakistan, has been investigated by means of the X-ray structural analysis and Mössbauer spectroscopy. Tetragonal unit-cell parameters are a = 15.5326(2), c =11.8040(2) Å, space group, P4/nnc. It has been established that Ti does not occupy the Y1-site as was previously believed, but is found in the octahedral site Y3, together with Al, Fe2+, and Fe3+. The role of the Y1 site in the diversity of vesuvianite-group minerals is discussed.

About the authors

R. K Rastsvetaeva

Shubnikov Institute of Crystallography, Federal Scientifi c Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: rast.crys@gmail.com
Moscow, Russia

S. M Aksenov

Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Email: aks.crys@gmail.com
Apatity, Russia

References

  1. Fukuyama M., Ogasawara M., Sato H. T. et al. Accumulation of trace elements in vesuvianite during fluid-rock interaction: An example from a zoned skarn developed between a metamorphosed basic dike and marble in the hirao limestone, Fukuoka, Japan. Can. Mineral. 2012; 50: 1373–1386.
  2. Tang X., Wang Y., Yang S. Y. et al. Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chem. Eng. J. 2015; 275: 198–205.
  3. Armbruster T., Gnos E., Dixon R. et al. Manganvesuvianite and tweddillite, two new Mn3+-silicate minerals from the Kalahari manganese fields, South Africa. Mineral. Mag. 2002; 66: 137–150.
  4. Groat L. A., Hawthorne F. C., Erict T. S. The chemistry of vesuvianite. Can. Mineral. 1992; 33: 19–48.
  5. Андрианов В. И. AREN-85 — развитие системы кристаллографических программ РЕНТГЕН на ЭВМ NORD, СМ-4 и ЕС. Кристаллография. 1987; 32: 228–231.
  6. Rastsvetaeva R. K., Chukanov N. V., Aksenov S. M. The crystal chemistry of lamprophyllite-related minerals. Eur. J. Mineral. 2016; 28(3): 915–930.
  7. Chukanov N. V., Pekov I. V., Rastsvetaeva R. K. et al. Lileyite, Ва2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel volcanic area, Germany. Eur. J. Mineral. 2012; 24(1): 181–188.
  8. Aksenov S. M., Rastsvetaeva R. K., Chukanov N. V. Crystal structure of emmerichite Ва2(Na,Mg)3Fe3+Ti2(Si2O7)2O2F2 — a new mineral of lamprophyllite group. Zeit. Krist. 2014; 229(1): 1–7.
  9. Moore P. B., Louisnathan J. Fresnoite: Unusual Titanium Coordination. Science. 1967; 156: 1361–1362.
  10. Chukanov N. V., Kazheva O. N., Fischer R. X., Aksenov S. M. Refinement of the crystal structure of fresnoite, Ba2TiSi2O8, from Löhley (Eifel district, Germany); Gladstone–Dale compatibility, electronic polarizability and vibrational spectroscopy of minerals and inorganic compounds with pentacoordinated TiIV and a titanyl bond. Acta Cryst. 2023; B79: 184–194.
  11. Giuseppetti G., Mazzi F. The crystal structure of a vesuvianite with P4/n symmetry. Tschermaks Mineral. Petrogr. Mitt. 1983; 31: 277–288.
  12. Britvin S. N., Antonov A. A., Krivovichev S. V. et al. Fluorvesuvianite, Ca19(Al,Mg,Fe2+)13[SiO4]10[Si2O7]4O(F,OH)9, a new mineral species from Pitkäranta, Karelia, Russia: description and crystal structure. Can. Mineral. 2003; 41: 1371–1380.
  13. Valley J. W., Peacor D. R., Bowman J. R. et al. Crystal chemistry of a Mg-vesuvianite and implications of phase equilibria in the system CaO—MgO—Al2O3—SiO2—H2O—CO2. Metamorph. Geol. 1985; 3: 137–153.
  14. Aksenov S. M., Chukanov N. V., Rusakov V. S. et al. Towards a revisitation of vesuvianite-group nomenclature: the crystal structure of Ti-rich vesuvianite from Alchuri, Shigar valley, Pakistan. Acta Crystallogr. 2016; B72: 744–752.
  15. Chukanov N. V., Panikorovskii T. L., Goncharov A. G. et al. Milanriederite, (Ca,REE)19Fe3+Al4(Mg,Al,Fe3+)8Si18O68(OH,O)10, a new vesuvianite-group mineral from the Kombat Mine, Namibia. Eur. J. Mineral. 2019; 31: 637–646.
  16. Panikorovskii T. L., Shilovskikh V. V., Avdontseva E. Y. et al. Cyprine, Ca19Cu2+(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group mineral from the Wessels mine, South Africa. Eur. J. Mineral. 2017; 29: 295–306.
  17. Panikorovskii T. L., Shilovskikh V. V., Avdontseva E. Y. et al. Magnesiovesuvianite, Ca19Mg(Al,Mg)12Si18O69(OH)9, a new vesuvianitegroup mineral. J. Geosci. 2017; 62: 25–36.
  18. Panikorovskii T. L., Chukanov N. V., Aksenov S. M. et al. Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, Asbestos, Estrie Region, Quebec, Canada. Mineral. Petrol. 2017; 111: 833–842. doi: 10.1007/s00710-017-0495-1.
  19. Xu J., Li G., Fan G. et al. Hongheite Ca18( ,Ca)2Fe2+Al4(Fe3+,Mg,Al)8( ,B)4BSi18O69(O,OH)9: a new vesuvianite group mineral from the world-class Gejiu tin polymetallic orefield, Yunnan Province, China. Acta Geologica Sinica. 2017; 93(1): 138–146.
  20. Moiseev M. M., Panikorovskii T. L., Aksenov S. M. et al. Insights into crystal chemistry of the vesuvianite-group: manaevite-(Ce), a new mineral with complex mechanisms of its hydration. Physics and Chemistry of Minerals. 2020; 47: 18. doi: 10.1007/s00269-020-01086-7.
  21. Groat L. A., Evans R. J. Crystal chemistry of Bi- and Mn-bearing vesuvianite from Långban, Sweden. American Mineralogist. 2012; 97: 1627–1634.
  22. Groat L. A., Evans R. J., Cempírek J. et al. Fe-rich and As-bearing vesuvianite and wiluite from Kozlov, Czech Republic. American Mineralogist. 2013; 98: 1330–1337.
  23. Smart M. M., Moore C. A., Mcmillen C. D., Kolis J. Hydrothermal Synthesis and Crystal Structure of Vesuvianite Compounds, Ca19Al13Si18O71(OH)7 and Sr19Fe12Ge19O72(OH)6. Crystals. 2023; 13(8): 1257–1273. doi: 10.3390/cryst13081257.
  24. Panikorovskii T. L., Mazur A. S., Bazai A. V. et al. X-ray diffraction and spectroscopic study of wiluite: Implications for the vesuvianite-group nomenclature. Phys. Chem. Mineral. 2017; 44: 577–593.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies