Where Is Titanium Hiding? Structure of a Potentially New Mineral from the Vesuvianite Group

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Minerals of the Vesuvianite group are complex ortho-diortho silicates of Са, Al, Fe, and some other elements. Vesuvianite with 5.85 wt. % of TiO2, from the Shigar Valley in northern Pakistan, has been investigated by means of the X-ray structural analysis and Mössbauer spectroscopy. Tetragonal unit-cell parameters are a = 15.5326(2), c =11.8040(2) Å, space group, P4/nnc. It has been established that Ti does not occupy the Y1-site as was previously believed, but is found in the octahedral site Y3, together with Al, Fe2+, and Fe3+. The role of the Y1 site in the diversity of vesuvianite-group minerals is discussed.

Sobre autores

R. Rastsvetaeva

Shubnikov Institute of Crystallography, Federal Scientifi c Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: rast.crys@gmail.com
Moscow, Russia

S. Aksenov

Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Email: aks.crys@gmail.com
Apatity, Russia

Bibliografia

  1. Fukuyama M., Ogasawara M., Sato H. T. et al. Accumulation of trace elements in vesuvianite during fluid-rock interaction: An example from a zoned skarn developed between a metamorphosed basic dike and marble in the hirao limestone, Fukuoka, Japan. Can. Mineral. 2012; 50: 1373–1386.
  2. Tang X., Wang Y., Yang S. Y. et al. Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chem. Eng. J. 2015; 275: 198–205.
  3. Armbruster T., Gnos E., Dixon R. et al. Manganvesuvianite and tweddillite, two new Mn3+-silicate minerals from the Kalahari manganese fields, South Africa. Mineral. Mag. 2002; 66: 137–150.
  4. Groat L. A., Hawthorne F. C., Erict T. S. The chemistry of vesuvianite. Can. Mineral. 1992; 33: 19–48.
  5. Андрианов В. И. AREN-85 — развитие системы кристаллографических программ РЕНТГЕН на ЭВМ NORD, СМ-4 и ЕС. Кристаллография. 1987; 32: 228–231.
  6. Rastsvetaeva R. K., Chukanov N. V., Aksenov S. M. The crystal chemistry of lamprophyllite-related minerals. Eur. J. Mineral. 2016; 28(3): 915–930.
  7. Chukanov N. V., Pekov I. V., Rastsvetaeva R. K. et al. Lileyite, Ва2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel volcanic area, Germany. Eur. J. Mineral. 2012; 24(1): 181–188.
  8. Aksenov S. M., Rastsvetaeva R. K., Chukanov N. V. Crystal structure of emmerichite Ва2(Na,Mg)3Fe3+Ti2(Si2O7)2O2F2 — a new mineral of lamprophyllite group. Zeit. Krist. 2014; 229(1): 1–7.
  9. Moore P. B., Louisnathan J. Fresnoite: Unusual Titanium Coordination. Science. 1967; 156: 1361–1362.
  10. Chukanov N. V., Kazheva O. N., Fischer R. X., Aksenov S. M. Refinement of the crystal structure of fresnoite, Ba2TiSi2O8, from Löhley (Eifel district, Germany); Gladstone–Dale compatibility, electronic polarizability and vibrational spectroscopy of minerals and inorganic compounds with pentacoordinated TiIV and a titanyl bond. Acta Cryst. 2023; B79: 184–194.
  11. Giuseppetti G., Mazzi F. The crystal structure of a vesuvianite with P4/n symmetry. Tschermaks Mineral. Petrogr. Mitt. 1983; 31: 277–288.
  12. Britvin S. N., Antonov A. A., Krivovichev S. V. et al. Fluorvesuvianite, Ca19(Al,Mg,Fe2+)13[SiO4]10[Si2O7]4O(F,OH)9, a new mineral species from Pitkäranta, Karelia, Russia: description and crystal structure. Can. Mineral. 2003; 41: 1371–1380.
  13. Valley J. W., Peacor D. R., Bowman J. R. et al. Crystal chemistry of a Mg-vesuvianite and implications of phase equilibria in the system CaO—MgO—Al2O3—SiO2—H2O—CO2. Metamorph. Geol. 1985; 3: 137–153.
  14. Aksenov S. M., Chukanov N. V., Rusakov V. S. et al. Towards a revisitation of vesuvianite-group nomenclature: the crystal structure of Ti-rich vesuvianite from Alchuri, Shigar valley, Pakistan. Acta Crystallogr. 2016; B72: 744–752.
  15. Chukanov N. V., Panikorovskii T. L., Goncharov A. G. et al. Milanriederite, (Ca,REE)19Fe3+Al4(Mg,Al,Fe3+)8Si18O68(OH,O)10, a new vesuvianite-group mineral from the Kombat Mine, Namibia. Eur. J. Mineral. 2019; 31: 637–646.
  16. Panikorovskii T. L., Shilovskikh V. V., Avdontseva E. Y. et al. Cyprine, Ca19Cu2+(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group mineral from the Wessels mine, South Africa. Eur. J. Mineral. 2017; 29: 295–306.
  17. Panikorovskii T. L., Shilovskikh V. V., Avdontseva E. Y. et al. Magnesiovesuvianite, Ca19Mg(Al,Mg)12Si18O69(OH)9, a new vesuvianitegroup mineral. J. Geosci. 2017; 62: 25–36.
  18. Panikorovskii T. L., Chukanov N. V., Aksenov S. M. et al. Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, Asbestos, Estrie Region, Quebec, Canada. Mineral. Petrol. 2017; 111: 833–842. doi: 10.1007/s00710-017-0495-1.
  19. Xu J., Li G., Fan G. et al. Hongheite Ca18( ,Ca)2Fe2+Al4(Fe3+,Mg,Al)8( ,B)4BSi18O69(O,OH)9: a new vesuvianite group mineral from the world-class Gejiu tin polymetallic orefield, Yunnan Province, China. Acta Geologica Sinica. 2017; 93(1): 138–146.
  20. Moiseev M. M., Panikorovskii T. L., Aksenov S. M. et al. Insights into crystal chemistry of the vesuvianite-group: manaevite-(Ce), a new mineral with complex mechanisms of its hydration. Physics and Chemistry of Minerals. 2020; 47: 18. doi: 10.1007/s00269-020-01086-7.
  21. Groat L. A., Evans R. J. Crystal chemistry of Bi- and Mn-bearing vesuvianite from Långban, Sweden. American Mineralogist. 2012; 97: 1627–1634.
  22. Groat L. A., Evans R. J., Cempírek J. et al. Fe-rich and As-bearing vesuvianite and wiluite from Kozlov, Czech Republic. American Mineralogist. 2013; 98: 1330–1337.
  23. Smart M. M., Moore C. A., Mcmillen C. D., Kolis J. Hydrothermal Synthesis and Crystal Structure of Vesuvianite Compounds, Ca19Al13Si18O71(OH)7 and Sr19Fe12Ge19O72(OH)6. Crystals. 2023; 13(8): 1257–1273. doi: 10.3390/cryst13081257.
  24. Panikorovskii T. L., Mazur A. S., Bazai A. V. et al. X-ray diffraction and spectroscopic study of wiluite: Implications for the vesuvianite-group nomenclature. Phys. Chem. Mineral. 2017; 44: 577–593.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Издательство «Наука», 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies