2021 Nobel Prize Laureates in Chemistry: Benjamin List and David W.C.MacMillan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In 2021 the Nobel Prize of Chemistry was awarded to professors Benjamin List of the Max Planck Institute for Coal Research (Germany) and David W.C.MacMillan of the Princeton University (USA) “for the development of asymmetric organocatalysis”, a method that uses small organic molecules as catalysts instead of enzymes or metals. This innovation in molecular construction has led to catalysts that are convenient in handling, less expensive, and environmentally friendly. Asymmetric organocatalysis is especially important to the drug discovery process. Biologically active molecules are often chiral, and organocatalysts provide a way to make candidate drug compounds enantioselectively, efficiently and quickly.

About the authors

S. G Zlotin

Zelinsky Institute of Organic Chemistry, RAS

Email: zlotin@ioc.ac.ru
Moscow, Russia

References

  1. Vineyard B.D., Knowles W.S., Sabacky M.J. et al. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. J. Am. Chem. Soc. 1977; 99(18): 5946–5952. doi: 10.1021/ja00460a018.
  2. Noyori R., Hashiguchi S. Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes. Acc. Chem. Res. 1997; 30(2): 97–102. doi: 10.1021/ar9502341.
  3. Katsuki T., Sharpless K.B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 1980; 102(18): 5974–5976. doi: 10.1021/ja00538a077.
  4. Gao Y., Klunder J.M., Hanson R.M. et al. Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization. J. Am. Chem. Soc. 1987; 109(19): 5765–5780. doi: 10.1021/ja00253a032.
  5. Hajos Z.G., Parrish D.R. Asymmetric synthesis of optically active polycyclic organic compounds. German patent. 1971; DE 2102623.
  6. Eder U., Sauer G.R., Wiechert R. Optically active 1,5-indanone and 1,6-naphthalenedione derivatives. 1971; German patent DE 2014757.
  7. Hajos Z.G., Parrish D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 1974; 39(12): 1615–1621. doi: 10.1021/jo00925a003.
  8. Nigmatov A.G., Serebryakov E.P. Catalytic asymmetric synthesis of 6-substituted derivatives of 1,3-cyclohexadiene carboxylic acid. Russ. Chem. Bull. 1993; 42(1): 233–234. doi: 10.1007/BF00700021.
  9. Tu Y., Wang Z.-X., Shi Y. An efficient asymmetric epoxidation for trans-olefins mediated by a fructose derived ketone. J. Am. Chem. Soc. 1996; 118(40): 9806–9807. doi: 10.1021/ja962345g.
  10. Denmark S.E., Wu Z., Crudden C. et al. Catalytic epoxidation of alkenes with oxone. 2. Fluoro ketones. J. Org. Chem. 1997; 62(24): 8288–8289. doi: 10.1021/jo971781y.
  11. Yang D., Yip Y.-C., Tang M.-W. et al. A C2 symmetric chiral ketone for catalytic asymmetric epoxidation of unfunctionalized olefins. J. Am. Chem. Soc. 1996; 118(2): 491–492. doi: 10.1021/ja9529549.
  12. Sigman M.S., Jacobsen E.N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc. 1998; 120(19): 4901–4902. doi: 10.1021/ja980139y.
  13. Corey E.J., Grogan M.J. Enantioselective synthesis of α-amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst. Org. Lett. 1999; 1(1): 157–160. doi: 10.1021/ol990623l.
  14. List B., Lerner R.A., Barbas III C.F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000; 122(10): 2395–2396. doi: 10.1021/ja994280y.
  15. Hoffmann T., Zhong G., List B. et al. Aldolase antibodies of remarkable scope. J. Am. Chem. Soc. 1998; 120(12): 2768–2779. doi: 10.1021/ja973676b.
  16. Ahrendt K.A., Borths C.J., MacMillan D.W.C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels–Alder reaction. J. Am. Chem. Soc. 2000; 122(17): 4243–4244. doi: 10.1021/ja000092s.
  17. MacMillan D.W.C. The advent and development of organocatalysis. Nature. 2008; 455: 304–308. doi: 10.1038/nature07367.
  18. List B. The direct catalytic asymmetric three-component Mannich reaction. J. Am. Chem. Soc. 2000; 122(38): 9336–9337. doi: 10.1021/ja001923x.
  19. JenW.S., Wiener J.J.M., MacMillan D.W.C. New Strategies for Organic Catalysis: The First Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition. J. Am. Chem. Soc. 2000; 122(40): 9874–9875. doi: 10.1021/ja005517p.
  20. Melchiorre P., Marigo M., Carlone A. et al. Asymmetric Aminocatalysis — Gold Rush in Organic Chemistry. Angew. Chem. Int. Ed. 2008; 47(33): 6138–6171. doi: 10.1002/anie.200705523.
  21. List B., Pojarliev P., Martin H.J. Efficient Proline-Catalyzed Michael-Additions of Unmodified Ketones to Nitroolefins. Org. Lett. 2001; 3(16): 2423–2425. doi: 10.1021/ol015799d.
  22. List B. Direct Catalytic Asymmetric α-Amination of Aldehydes. J. Am. Chem. Soc. 2002; 124(20): 5656–5657. doi: 10.1021/ja0261325.
  23. Vignola N., List B. Catalytic Asymmetric Intramolecular α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2004; 126(2): 450–451. doi: 10.1021/ja0392566.
  24. Paras N.A., MacMillan D.W.C. The Enantioselective Organocatalytic 1,4-Addition of Electron-Rich Benzenes to α,β-Unsaturated Aldehydes. J. Am. Chem. Soc. 2002; 124(27): 7894–7895. doi: 10.1021/ja025981p.
  25. Paras N.A., MacMillan D.W.C. New Strategies in Organic Catalysis: The First Enantioselective Organocatalytic Friedel-Crafts Alkylation. J. Am. Chem. Soc. 2001; 123(18): 4370–4371. doi: 10.1021/ja015717g.
  26. Brown S.P., Goodwin N.C., MacMillan D.W.C. The First Enantioselective Organocatalytic Mukaiyama—Michael Reaction: A Direct Method for the Synthesis of Enantioenriched γ-Butenolide Architecture. J. Am. Chem. Soc. 2003; 125(5): 1192–1194. doi: 10.1021/ja029095q.
  27. J.W. Yang, Hechavarria Fonseca M.T., Vignola N., List B. Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of α,β-Unsaturated Aldehydes. Angew. Chem. Int. Ed. 2005; 44(1): 108–110. doi: 10.1002/anie.200462432.
  28. Ouellet S.G., Tuttle J.B., MacMillan D.W.C. Enantioselective Organocatalytic Hydride Reduction. J. Am. Chem. Soc. 2005; 127(1): 32–33. doi: 10.1021/ja043834gAaa.
  29. Jensen K.L., Dickmeiss G., Jiang H. et al. The Diarylprolinol Silyl Ether System: A General Organocatalyst. Acc. Chem. Res. 2012; 45(2): 248–264. doi: 10.1021/ar200149.
  30. Hayashi Y., Gotoh H., Hayashi T. et al. Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angew. Chem. Int. Ed. 2005; 44(27): 4212–4215. doi: 10.1002/anie.200500599.
  31. Wenzel A.G., Jacobsen E.N. Asymmetric catalytic Mannich reactions catalyzed by urea derivatives: enantioselective synthesis of β-aryl-β-amino acids. J. Am. Chem. Soc. 2002; 124(44): 12964–12965. doi: 10.1021/ja028353g.
  32. Malerich J.P., Hagihara K., Rawal V.H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2008; 130(44): 14416–14417. doi: 10.1021/ja805693p.
  33. Zhu Y., Malerich J.P., Rawal V.H. Squaramide-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroalkenes. Angew. Chem. Int. Ed. 2010; 49(1): 153–156. doi: 10.1002/anie.200904779.
  34. Akiyama T., Itoh J., Yokota K., Fuchibe K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brшnsted Acid. Angew. Chem. Int. Ed. 2004; 43(12): 1566–1568. doi: 10.1002/anie.200353240.
  35. Uraguchi D., Terada M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc. 2004; 126(17): 5356–5357. doi: 10.1021/ja0491533.
  36. Siyutkin D.E., Kucherenko A.S., Struchkova M.I., Zlotin S.G. A novel (S)-proline-modified task-specific chiral ionic liquid — an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Lett. 2008; 49(7): 1212–1216. doi: 10.1016/j.tetlet.2007.12.044.
  37. Tukhvatshin R.S., Kucherenko A.S., Nelyubina Y.V., Zlotin S.G. Tertiary Amine-Derived Ionic Liquid-Supported Squaramide as a Recyclable Organocatalyst for Noncovalent “On Water” Catalysis. ACS Catal. 2017; 7(4): 2981–2989. doi: 10.1021/acscatal.7b00562.
  38. Asymmetric Organocatalysis. B.List, K.Maruoka (eds.). Stuttgard; N.Y., 2012.
  39. García-García P., et al. A Powerful Chiral Counteranion Motif for Asymmetric Catalysis. Angew. Chem. Int. Ed. 2009; 48(24): 4363–4366. doi: 10.1002/anie.200901768.
  40. James T., van Gemmeren M., List B. Development and Applications of Disulfonimides in Enantioselective Organocatalysis. Chem. Rev. 2015; 115(17): 9388–9409. doi: 10.1021/acs.chemrev.5b00128.
  41. Prévost S., Dupré N., Leutzsch M. et al. Catalytic Asymmetric Torgov Cyclization: A Concise Total Synthesis of (+)-Estrone. Angew. Chem., Int. Ed. 2014; 53(33), 8770–8773. doi: 10.1002/anie.201404909.
  42. Mandrelli F., Blond A., James T. et al. Deracemizing α-Branched Carboxylic Acids by Catalytic Asymmetric Protonation of Bis-Silyl Ketene Acetals with Water or Methanol. Angew. Chem. Int. Ed. 2019; 58(33): 11479–11482. doi: 10.1002/anie.201905623.
  43. Kaib P.S.J., Schreyer L., Lee S. et al. Extremely Active Organocatalysts Enable a Highly Enantioselective Addition of Allyltrimethylsilane to Aldehydes. Angew. Chem. Int. Ed. 2016; 55(42): 13200–13203. doi: 10.1002/anie.201607828.
  44. Schreyer L., Properzi R., List B. IDPi Catalysis. Angew. Chem. Int. Ed. 2019; 58(37): 12761–12777. doi: 10.1002/anie.201900932.
  45. Jones S.B., Simmons B., MacMillan D.W.C. Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine. J. Am. Chem. Soc. 2009; 131(38): 13606–13607. doi: 10.1021/ja906472m.
  46. Jones S.B., Simmons B., Mastracchio A., MacMillan D.W.C. Collective synthesis of natural products by means of organocascade catalysis. Nature. 2011; 475: 183–188. doi: 10.1038/nature10232.
  47. Laforteza B.N., Pickworth M., MacMillan D.W.C. Enantioselective Total Synthesis of (–)-Minovincine in Nine Chemical Steps: An Approach to Ketone Activation in Cascade Catalysis. Angew. Chem. Int. Ed. 2013; 52(43): 11269–11272. doi: 10.1002/anie.201305171.
  48. Horning B.D., MacMillan D.W.C. Nine-Step Enantioselective Total Synthesis of (–)-Vincorine. J. Am. Chem. Soc. 2013; 135(17): 6442–6445. doi: 10.1021/ja402933s.
  49. Reiter M., Torssell S., Lee S. et al. The organocatalytic three-step total synthesis of (+)-frondosin B. Chem. Sci. 2010; 1(1): 37–42. doi: 10.1039/c0sc00204f.
  50. Jang H., Hong J. MacMillan D.W.C. Enantioselective organocatalytic singly occupied molecular orbital activation: the enantioselective α-enolation of aldehydes. J. Am. Chem. Soc. 2007; 129(22): 7004–7005. doi: 10.1021/ja0719428.
  51. Kim H., MacMillan D.W.C. Enantioselective organo–SOMO catalysis: the α-vinylation of aldehydes. J. Am. Chem. Soc. 2008; 130(2): 398–399. doi: 10.1021/ja077212h.
  52. Jui N.T., Garber J.A.O., Finelli F.G., MacMillan D.W.C. Enantioselective Organo-SOMO Cycloadditions: A Catalytic Approach to Complex Pyrrolidines from Olefins and Aldehydes. J. Am. Chem. Soc. 2012; 134(28): 11400–11403. doi: 10.1021/ja305076b.
  53. Conrad J.C., Kong J., Laforteza B.N., MacMillan D.W.C. Enantioselective α-Arylation of Aldehydes via Organo-SOMO Catalysis. An Ortho-Selective Arylation Reaction Based on an Open-Shell Pathway. J. Am. Chem. Soc. 2009; 131(33): 11640–11641. doi: 10.1021/ja9026902.
  54. Rendler S., MacMillan D.W.C. Enantioselective Polyene Cyclization via Organo-SOMO Catalysis. J. Am. Chem. Soc. 2010; 132(14): 5027–5029. doi: 10.1021/ja100185p.
  55. Shaw M.H., Twilton J., MacMillan D.W.C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016; 81(16): 6898–6926. doi: 10.1021/acs.joc.6b01449.
  56. Capacci A.G., Malinowski J.T., McAlpine N.J. et al. Direct, enantioselective α-alkylation of aldehydes using simple olefins. Nature Chem. 2017; 9: 1073-1077. doi: 10.1038/nchem.2797.
  57. Nacsa E.D., MacMillan D.W.C. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols. J. Am. Chem. Soc. 2018; 140(9): 3322–3330. doi: 10.1021/jacs.7b12768.
  58. Welin E.R., Warkentin A.A., Conrad J.C., MacMillan D.W.C. Enantioselective α-Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from β-Cyanoaldehydes. Angew. Chem. Int. Ed. 2015; 54(33): 9668–9672. doi: 10.1002/anie.201503789.
  59. Cecere G., König C.M., Alleva J.L., MacMillan D.W.C. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling. J. Am. Chem. Soc. 2013; 135(31): 11521–11524. doi: 10.1021/ja406181e.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies