COVID-19 Impact on Hemostasis


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Among the most dangerous effects of COVID-19 — SARS-CoV-2 caused disease — is a spontaneous thrombus formation in the blood micro-vesselsof lungs that causes hypoxia and enhances inflammation. In the most severe cases, disseminated intravascular coagulation (DIC) may occur, resultingin multiple hemorrhages. Blood coagulation dysfunction mechanisms caused by COVID-19 are being actively studied. Lung damage results in the acti-vation of the arteriole vessel wall cells that causes formation of the tissue factor, a protein that induces activation of the blood plasma coagulation cas-cade and thrombus formation initiation. Some researchers assumed that SARS-CoV-2 can enter the platelets and activate them, others tend to proposehypothesis that platelets in COVID-19 are activated mostly due to blood plasma coagulation in lungs. Enhanced immune response, represented by thecytokine storm also contributes to the shifting of the hemostasis system. Nowadays, therapeutic approaches based on low molecular weight heparin thatcan significantly alleviate the condition of patients have been developed. However, their use requires reliable and sensitive analyzers of thrombodynamics.New approaches to diagnostics, development of vaccines, as well as these achievements allow us to be excited about soon COVID-19 overcome.

Әдебиет тізімі

  1. Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; CoronavirusDisease-19). Clin. Exp. Pediatr. 2020; 63(4): 119–124. doi: 10.3345/cep.2020.00493.
  2. Yang M., Li C.K., Li K. et al.Hematological findings in SARS patients and possible mechanisms (Review). Int. J. Mol. Med. 2004; 14(2): 311–315. doi: 10.3892/ijmm.14.2.311.
  3. Yang X., Yang Q., Wang Y. et al.Thrombocytopenia and its association with mortality in patients with COVID-19. J. Thromb. Haemost.2020; 18(6): 1469–1472. doi: 10.1111/jth.14848.
  4. Thachil J., Tang N., Gando S. et al.ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb.Haemost. 2020. 18(5): 1023–1026. doi: 10.1111/jth.14810.
  5. Ahn D.G., Shin H.J., Kim M.H. et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease2019 (COVID-19). J. Microbiol. Biotechnol. 2020; 30(3): 313–324. doi: 10.4014/jmb.2003.03011.
  6. Zhai P., Ding Y., Wu X. et al. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents. 2020; 55(5): 105955.doi: 10.1016/j.ijantimicag.2020.105955.
  7. Adhikari S.P., Meng S., Wu Y.J. et al.Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirusdisease (COVID-19) during the early outbreak period: a scoping review. Infect. Dis. Poverty. 2020; 9(1): 29. doi: 10.1186/s40249-020-00646-x.
  8. Terpos E., Ntanasis-Stathopoulos I., Elalamy I. et al. Hematological findings and complications of COVID?19. Am. J. Hematol. 2020;95(7): 834–847. doi: 10.1002/ajh.25829.
  9. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5(11): e138999.doi: 10.1172/jci.insight.138999.
  10. Wang Y., Lu X., Li Y. et al.Clinical course and outcomes of 344 intensive care patients with COVID-19. Am. J. Respir. Crit. Care Med.2020; 201(11): 1430–1434. doi: 10.1164/rccm.202003-0736LE.
  11. Richardson S., Hirsch J.S., Narasimhan M. et al.Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020; 323(20): 2052–2059. doi: 10.1001/jama.2020.6775.
  12. Wunsch H.Mechanical ventilation in COVID-19: interpreting the current epidemiology. Am. J. Respir. Crit. Care Med. 2020; 202(1): 1–4. doi: 10.1164/rccm.202004-1385ED.
  13. Xu P., Zhou Q., Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020; 99(6): 1205–1208.doi: 10.1007/s00277-020-04019-0.
  14. Levi M., Sivapalaratnam S. Disseminated intravascular coagulation: an update on pathogenesis and diagnosis. Expert Rev. Hematol.2018; 11(8): 663–672. doi: 10.1080/17474086.2018.1500173.
  15. Makatsariya A.D., Grigoreva K.N., Mingalimov M.A. et al. Coronavirus disease (COVID-19) and disseminated intravascular coagulationsyndrome. Obstetrics, Gynecology and Reproduction. 2020; 14(2): 123–131. doi: 10.17749/2313-7347.132.
  16. Versteeg H.H., Heemskerk J.W., Levi M., Reitsma P.H.New fundamentals in hemostasis. Physiol. Rev. 2013; 93(1): 327–58.doi: 10.1152/physrev.00016.2011.
  17. Пантелеев М.А., Свешникова А.Н. Тромбоциты и гемостаз. Онкогематология. 2014; 9(2): 65–73. [Panteleev M.A., Sveshnikova A.N.Platelets and hemostasis. Oncohematology. 2014; 9(2): 65–73. (In Russ.).] doi: 10.17650/1818-8346-2014-9-2-65-73.
  18. Ovanesov M.V., Ananyeva N.M., Panteleev M.A. et al. Initiation and propagation of coagulation from tissue factor-bearing cell monolayers to plasma: initiator cells do not regulate spatial growth rate. J. Thromb. Haemost. 2005; 3(2): 321–331.doi: 10.1111/j.1538-7836.2005.01128.x.
  19. Witkowski M., Landmesser U., Rauch U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc. Med2016;26(4): 297–303. doi: 10.1016/j.tcm.2015.12.001.
  20. Pryzdial E.L.G., Lin B.H., Sutherland M.R.Virus–Platelet Associations. Platelets in Thrombotic and Non-Thrombotic Disorders. GreseleP., Kleiman N.S., Lopez J.A., Page C.P. (eds). N.Y., 2017; 1085–1102.
  21. Chaipan C., Soilleux E.J., Simpson P. et al.DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets.J. Virol. 2006; 80(18): 8951–8960. doi: 10.1128/JVI.00136-06.
  22. Real F., Capron C., Sennepin A. et al. Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4+T cellrecovery can harbor replication-competent HIV despite viral suppression. Sci. Transl. Med. 2020; 12(535): eaat6263. doi: 10.1126/scitranslmed.aat6263.
  23. Koupenova M., Corkrey H.A., Vitseva O. et al. The role of platelets in mediating a response to human influenza infection. Nat. Commun.2019; 10(1): 1780. doi: 10.1038/s41467-019-09607-x.
  24. Tang N., Bai H., Chen X. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patientswith coagulopathy. J. Thromb. Haemost. 2020; 18(5): 1094–1099. doi: 10.1111/jth.14817.
  25. Koltsova E.M., Balandina A.N., Grischuk K.I. et al. The laboratory control of anticoagulant thromboprophylaxis during the early postpartum period after cesarean delivery. J. Perinat. Med. 2018; 46(3): 251–260. doi: 10.1515/jpm-2016-0333.
  26. Soshitova N.P., Karamzin S.S., Balandina A.N. et al.Predicting prothrombotic tendencies in sepsis using spatial clot growth dynamics.Blood Coagulation & Fibrinolysis. 2012; 23(6): 498–507. doi: 10.1097/MBC.0b013e328352e90e.
  27. Gracheva M.A., Urnova E.S., Sinauridze et al.Thromboelastography, thrombin generation test and thrombodynamics reveal hypercoagulability in patients with multiple myeloma. Leuk. Lymphoma. 2015; 56(12): 3418–3425.doi: 10.3109/10428194.2015.1041385.
  28. Seregina E.A., Nikulina O.F., Tsvetaeva N.V. et al. Laboratory tests for coagulation system monitoring in a patient with beta-thalassemia.Int. J. Hematol. 2014; 99(5): 588–596. doi: 10.1007/s12185-014-1559-1.
  29. Seregina E.A., Tsvetaeva N.V., Nikulina O.F. et al.Eculizumab effect on the hemostatic state in patients with paroxysmal nocturnal hemoglobinuria. Blood Cells Mol. Dis. 2015; 54(2): 144–150. doi: 10.1016/j.bcmd.2014.11.021.
  30. Seregina E.A., Poletaev A.V., Bondar E.V. et al. The hemostasis system in children with hereditary spherocytosis. Thromb. Res. 2019; 176: 11–17. doi: 10.1016/j.thromres.2019.02.004.
  31. Ovanesov M.V., Lopatina E.G., Saenko E.L. et al. Effect of factor VIII on tissue factor-initiated spatial clot growth. Thromb. Haemost.2003; 89(2): 235–242.
  32. Balandina A.N., Serebriyskiy I.I., Poletaev A.V. et al.Thrombodynamics-A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS One. 2018; 13(6): e0199900. doi: 10.1371/journal.pone.0199900.
  33. Manne B.K., Denorme F., Middleton E.A. et al.Platelet gene expression and function in COVID-19 patients. Blood. 2020; 36(11): 1317–1329. doi: 10.1182/blood.2020007214.
  34. Li J., Li Y., Yang B.H. et al. Low-molecular-weight heparin treatment for acute lung injury/acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Int. J. Clin. Exp. Med. 2018; 11(2): 414–422.
  35. Tichelaar Y.I.G.V., Kluin-Nelemans H.J.C., Meijer K. Infections and inflammatory diseases as risk factors for venous thrombosis. A systematic review. Thromb. Haemost. 2012; 107(5): 827–837. doi: 10.1160/TH11-09-0611.
  36. Wakefield T.W. et al.Inflammatory and procoagulant mediator interactions in an experimental baboon model of venous thrombosis.Thromb. Haemost. 1993; 69(2): 164–172.
  37. Hochart H., Jenkins P.V., Smith O.P., White B. Low-molecular weight and unfractionated heparins induce a downregulation of inflammation: decreased levels of proinflammatory cytokines and nuclear factor-kappaB in LPS-stimulated human monocytes. Br. J. Haematol. 2006; 133(1): 62–67. doi: 10.1111/j.1365-2141.2006.05959.x.
  38. Liu X., Zhang X., Xiao Y. et al.Heparin-induced thrombocytopenia is associated with a high risk of mortality in critical COVID-19patients receiving heparin-involved treatment. MedRxiv. 28.04.2020. doi: 10.1101/2020.04.23.20076851

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Издательство «Наука», 2020

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>