Formative Fabrication: a New Industry

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Formative fabrication is a revolutionary manufacturing of three-dimensional structures from inorganic and organic substances, including living cells. The main idea is the use of various physical fields to provide the temporary and removable non-contact support for directed and programmable assembly of such substances. Physical fields can be magnetic, acoustic, electric or others, and can be used separately or in various combinations. This review formulates the main physical principles of the 3D assembly and fabrication, provides clear examples of successful practical application of the technology (in particular, in tissue engineering), describes the still unsettled scientific and technological issues, and outlines the main directions of future development. The role of domestic scientists in the development of this new promising and innovative technology is distinctly emphasized. The ongoing development of the proposed approach theoretically could become the basis of the next industrial revolution.

作者简介

V. Parfenov

Baikov Institute of Metallurgy and Materials Science, RAS; Joint Stock Company “Science and Innovation”, State Corporation “Rosatom”

Email: vlalparfenov@rosatom.ru
Moscow, Russia; Moscow, Russia

V. Komlev

Baikov Institute of Metallurgy and Materials Science, RAS

Email: komlev@mail.ru
Moscow, Russia

O. Petrov

Joint Institute for High Temperatures, RAS

Email: ofpetrov@ihed.ras.ru
Moscow, Russia

A. Dub

Joint Stock Company “Science and Innovation”, State Corporation “Rosatom”

Email: AlVDub@rosatom.ru
Moscow, Russia

Y. Hesuani

Laboratory for Biotechnological Research “3D Bioprinting Solutions”

Email: hesuani@bioprinting.ru
Moscow, Russia

V. Mironov

Laboratory for Biotechnological Research “3D Bioprinting Solutions”

Email: vladimir.vichugov54@gmail.com
Moscow, Russia

参考

  1. Langer R., Vacanti J.P. Tissue engineering. Science. 1993; 260(5110): 920–926. doi: 10.1126/science.8493529.
  2. Armstrong J.P.K., Stevens M.M. Using Remote Fields for Complex Tissue Engineering. Trends Biotechnol. 2020; 38(3): 254–263. doi: 10.1016/j.tibtech.2019.07.005.
  3. Parfenov V.A., Koudan E.V., Bulanova E.A. et al. Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly. Biofabrication. 2018; 10(3): 034104. doi: 10.1088/1758-5090/aac900.
  4. ThomsonW. Reprint of papers on electrostatics and magnetism. Nature. 1873; 7(169): 218–221. doi: 10.1038/007218a0.
  5. Berry M.V., Geim A.K. Of flying frogs and levitrons. Eur. J. Phys. 1997; 18: 307–313.
  6. Petrov O.F., Myasnikov M.I., D’yachkov L.G. et al. Coulomb clusters of dust particles in a cusp magnetic trap under microgravity conditions. Phys. Rev. E. 2012; 86(3): 036404. doi: 10.1103/PhysRevE.86.036404.
  7. Parfenov V.A., Mironov V.A., van Kampen K.A. et al. Scaffold-free and label-free biofabrication technology using levitational assembly in a high magnetic field. Biofabrication. 2020; 12(4): 045022. doi: 10.1088/1758-5090/ab7554.
  8. Parfenov V.A., Khesuani Y.D., Petrov S.V. et al. Magnetic levitational bioassembly of 3D tissue construct in space. Sci. Adv. 2020; 6(29): eaba4174. doi: 10.1126/sciadv.aba4174.
  9. Parfenov V.A., Petrov S.V., Pereira F.D.A.S. et al. Scaffold-free, label-free, and nozzle-free magnetic levitational bioassembler for rapid formative biofabrication of 3D tissues and organs. Int. J. Bioprint. 2020; 6(3):304. doi: 10.18063/ijb.v6i3.304.
  10. Moroni L., Tabury K., Stenuit H. et al. What can biofabrication do for space and what can space do for biofabrication? Trends Biotechnol. 2021; S0167–7799(21)00195-5. doi: 10.1016/j.tibtech.2021.08.008.
  11. Parfenov V.A., Koudan E.V., Krokhmal A.A. et al. Biofabrication of a functional tubular construct from tissue spheroids using magnetoacoustic levitational directed assembly. Adv. Healthc. Mater. 2020; 9(24): e2000721. doi: 10.1002/adhm.202000721.
  12. Krokhmal A., Sapozhnikov O., Koudan E. et al. Assembly of a ring-shaped construct from tissue spheroids in a magneto-acoustic field. Proc. Mtgs Acoustics. Acoust. 2019; 38(1): 020006. doi: 10.1121/2.0001081.
  13. Крохмаль А.А., Сапожников О.А., Цысарь С.А. и др. Биофабрикация кольцеобразного конструкта из тканевых сфероидов в магнитоакустическом поле. Ученые записки физического факультета Московского Университета. 2020; 1: 2010902-1–2010902-4.
  14. Parfenov V.A., Mironov V.A., Koudan E.V. et al. Fabrication of calcium phosphate 3D scaffolds for bone repair using magnetic levitational assembly. Sci. Rep. 2020; 10(1): 4013. doi: 10.1038/s41598-020-61066-3.
  15. HarknessW.A., Goldschmid J.H. Free-form spatial 3-D printing using part levitation. U.S. patent No 9908288B2. 2018.03.06.
  16. An J., Chua C.K., Mironov V. Application of machine learning in 3D bioprinting: focus on development of big data and digital twin. Int. J. Bioprint. 2021; 7(1): 342. doi: 10.18063/ijb.v7i1.342
  17. Шашнов С.А., Дуб А.В. Инновационные приоритеты для энергетического машиностроения: опыт отраслевого форсайта. Форсайт. 2007; 1(3): 4–11.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Издательство «Наука», 2022

##common.cookie##