Diagnostic value of nonactivated thromboelastometry in obstetric and gynecological practice with a focus on rare coagulopathies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The quality of clinical laboratory tests is characterized by clinical informative value, which is one of the main parameters. Activator tests and nonactivated thromboelastometry (NATEM) are performed with the ROTEM Delta thromboelastometer. Activator tests provide rapid assessment of fibrinogen activity, coagulation factors, fibrinolysis and the effect of heparin on clot formation, which determines their high clinical information value for Point Оf Care evaluation of coagulation and targeted therapy for massive bleeding. NATEM is more commonly used in clinical practice due to its ease of implementation and low cost; however, there is a lack of convincing evidence of its clinical value in identifying the causes of bleeding, particularly in obstetrics and gynecology.

NATEM parameters were shown to have high sensitivity to hypercoagulability and low sensitivity to detect von Willebrand disease, F:VII and F:XII deficiency in patients with obstetric and gynecological coagulopathy. In the presence of lupus anticoagulant, NATEM parameters do not reflect prothrombotic risk, but are instead in the area of hypocoagulation. In hemorrhage, NATEM parameters are multidirectional and fail to differentiate the cause of the hemorrhagic syndrome.

Conclusion: NATEM has low diagnostic value for the detection of coagulopathy in obstetric and gynecological patients. NATEM parameters are highly sensitive to hypercoagulation, which may mask clotting factor deficiency. NATEM does not provide diagnostic evidence of the cause of coagulopathic bleeding; activator tests should be performed for this purpose.

Full Text

Restricted Access

About the authors

Olga S. Beznoshchenko

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: o_beznoshchenko@oparina4.ru
ORCID iD: 0000-0003-4645-8976

PhD, Researcher at the Institute of Anesthesiology, Intensive Care and Transfusiology, clinical laboratory diagnostics doctor at the Department of Anesthesiology and Intensive Care

Russian Federation, Moscow

Tatiana A. Fedorova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: t_fyodorova@oparina4.ru
ORCID iD: 0000-0001-6714-6344

Dr. Med. Sci., Professor, Deputy Director of the Institute of Anesthesiology, Intensive Care and Transfusiology, Head of the Department of Transfusiology and Extracorporeal Hemocorrection

Russian Federation, Moscow

Elena V. Strelnikova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: estrel100@mail.ru
ORCID iD: 0000-0002-6926-8414

PhD, transfusiologist, Department of Extracorporeal Treatment and Detoxification of the Institute of Anesthesiology

Russian Federation, Moscow

Olga A. Parfenova

Patrice Lumumba Peoples’ Friendship University of Russia

Email: parfenony@gmail.com
ORCID iD: 0000-0003-4492-0426

hematologist

Russian Federation, Moscow

Alexey V. Dikov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: dikov.08@gmail.com
ORCID iD: 0000-0002-2298-1853

anesthesiologist-resuscitator at the Department of Anesthesiology and Intensive Care of the Institute of Anesthesiology

Russian Federation, Moscow

Borislav V. Silaev

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: b_silaev@oparina4.ru
ORCID iD: 0000-0002-9698-3915

PhD, Head of the Department of Anesthesiology and Intensive Care of the Institute of Anesthesiology, Intensive Care and Transfusiology, Associate Professor at the Department of Anesthesiology and Intensive Care, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia

Russian Federation, Moscow

References

  1. Amgalan A., Allen T., Othman M., Ahmadzia H.K. Systematic review of viscoelastic testing (TEG/ROTEM) in obstetrics and recommendations from the women’s SSC of the ISTH. J. Thromb. Haemost. 2020; 18(8): 1813-38. https//dx.doi.org/10.1111/jth.14882
  2. Georgiadou P., Sokou R., Tsantes A.G., Parastatidou S., Konstantinidi A., Houhoula D. et al. The non-activated thromboelastometry (NATEM) assay’s application among adults and neonatal/pediatric population: a systematic review. Diagnostics (Basel). 2022; 12(3): 658. https//dx.doi.org/10.3390/diagnostics12030658
  3. Tsaousi M., Sokou R., Pouliakis A., Politou M., Iacovidou N., Boutsikou T. et al. Hemostatic status of neonates with perinatal hypoxia, studied via NATEM in cord blood samples. Children (Basel). 2024; 11(7): 799. https://dx.doi.org/10.3390/children11070799
  4. Роненсон А.М., Шифман Е.М., Куликов А.В., Распопин Ю.С. Референсные показатели ротационной тромбоэластометрии у беременных и рожениц: систематический обзор и метаанализ. Анестезиология и реаниматология. 2021; (3): 28-40. [Ronenson A.M., Shifman E.M., Kulikov A.V., Raspopin Yu.S. Reference values of rotational thromboelastometry in pregnancy and parturition: a systematic review and meta-analysis. Russian Journal of Anesthesiology and Reanimatology. 2021; (3): 28-40. (in Russian)]. https://dx.doi.org/10.17116/anaesthesiology202103128
  5. Безнощенко О.С., Маркелов М.И., Кречетова Л.В. Материалы научно-практических конференций в рамках V Российского конгресса лабораторной медицины (РКЛМ 2019). 2019. 256c. [Beznoshchenko O.S., Markelov M.I., Krechetova L.V. Proceedings of scientific and practical conferences within the framework of the V Russian Congress of Laboratory Medicine (RCLM 2019). 2019. 256p. (in Russian)].
  6. Долгушина Н.В., Шпилюк М.А., Иванец Т.Ю., Безнощенко О.С., Пырегов А.В., Городнова Е.А., Кречетова Л.В. Роль и место интегральных методов в диагностике нарушений системы гемостаза у больных COVID-19. Лабораторная служба. 2022; 11(4): 7-15. [Dolgushina N.V., Shpilyuk M.A., Ivanets T.Yu., Beznoshchenko O.S., Pyregov A.V., Gorodnova E.A., Krechetova L.V. The role and place of integral methods in the diagnosis of hemostasis. Laboratory Service. 2022; 11(4): 7-15. (in Russian)]. https://dx.doi.org/10.17116/labs2022110417
  7. Rogalski P., Rogalska M., Martonik D., Rusak M., Pawlus J., Chociej-Stypulkowska J. et al. Rotational thromboelastometry (ROTEM®) in relation to inflammatory biomarkers and clinical outcome in COVID-19 patients. J. Clin. Med. 2023; 12(12): 3919. https://dx.doi.org/10.3390/JCM12123919/S1
  8. Безнощенко О.С., Федорова Т.А., Стрельникова Е.В., Городнова Е.А., Пырегов А.В., Силаев Б.В. Характеристика параметров тромбоэластометрии в аспекте клинической значимости. Тромбоз, гемостаз и реология. 2024; (3): 104-17. [Beznoshchenko O.S., Fedorova T.A., Strelnikova E.V., Gorodnova E.A., Pyregov A.V., Silaev B.V. Characteristics of thromboelastometry parameters in terms of clinical significance. Thrombosis, hemostasis and rheology. 2024; (3): 104-17. (in Russian)]. https://dx.doi.org/10.25555/THR.2024.3.1115
  9. Репина М.А., Папаян Л.П., Вавилова Т.В., Зазерская И.Е., Зайнулина М.С., Корзо Т.М., Бобров С.А., Корнюшина Е.А. Междисциплинарный экспертный совет по разработке рекомендаций (протокола) «Ведение беременных женщин с риском тромбозов и осложнений беременности на фоне активации системы гемостаза». Лечащий врач. 2017; (11): 57-64. [Repina M.A., Papayan L.P., Vavilova T.V., Zazerskaya I.E., Zainulina M.S., Korzo T.M., Bobrov S.A., Kornyushina E.A. Inter-disciplinary advisory council on development of recommendations (protocol) on «Guiding pregnant women with the risk of thrombosis and pregnancy complications against the background of activation of hemostasis system». The Lechaschi Vrach Journal. 2017;(11): 57-64. (in Russian)].
  10. Connell N.T., Flood V.H., Brignardello-Petersen R., Abdul-Kadir R., Arapshian A., Couper S. et al. ASH ISTH NHF WFH 2021 guidelines on the management of von Willebrand disease. Blood Adv. 2021; 5(1): 301-25. https:// dx.doi.org/10.1182/bloodadvances.2020003264
  11. Görlinger K., Almutawah H., Almutawaa F., Alwabari M., Alsultan Z., Almajed J. et al.The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J. Anesthesiol. 2019; 72(4): 297-322. https://dx.doi.org/10.4097/kja.19169
  12. Görlinger K., Iqbal J., Dirkmann D., Tanaka K. Whole blood assay: Thromboelastometry. In: Teruya J., ed. Management of Bleeding Patients. Basel: Springer Nature Switzerland AG; 2016: 37-64. https://dx.doi.org/10.1007/ 978-3-319-30726-8_5
  13. Долгов В.В., Вавилова Т.В., Свирин П.В. Лабораторная диагностика нарушений гемостаза. М.-Тверь: ООО "Издательство "Триада"; 2019. 400с. [Dolgov V.V., Vavilova T.V., Svirin P.V. Laboratory diagnostics of hemostasis disorders. Moscow-Tver: LLC "Publishing house Triada"; 2019. 400p. (in Russian)].
  14. Yeom R.S., Wang X.A., Elia E., Yoon U. Severe congenital factor VII deficiency with normal perioperative coagulation profile based on ROTEM analysis in a hepatectomy. Am. J. Case Rep. 2021; 22: e930245. https://dx.doi.org/10.12659/AJCR.930245.
  15. Santoro R.C., Molinari A.C., Leotta M., Martini T. Isolated prolongation of activated partial thromboplastin time: not just bleeding risk! Medicina (Kaunas). 2023; 59(6): 1169. https://dx.doi.org/10.3390/medicina59061169.
  16. Konrath S., Mailer R.K., Renné T. Mechanism, functions, and diagnostic relevance of FXII activation by foreign surfaces. Hamostaseologie. 2021; 41(6): 489-501. https://dx.doi.org/10.1055/a-1528-0499
  17. Hensch L., Kostousov V., Bruzdoski K., Losos M., Pereira M., de Guzman M. et al. Does rotational thromboelastometry accurately predict coagulation status in patients with lupus anticoagulant? Int. J. Lab. Hematol. 2018; 40(5): 521-6. https://dx.doi.org/10.1111/ijlh.12852
  18. Zhou Y., Tao W., Qin X., Lin R., Liu Z., Xu Z. et al. Evaluating coagulation status with thromboelastography in a woman with antiphospholipid syndrome and sepsis: a case report. J. Anesth. 2020; 34(5): 781-5. https://dx.doi.org/10.1007/s00540-020-02817-4
  19. Talon L., Fourneyron V., Senectaire S., Tardieu M., Tillier M., Trapani A. et al. Lupus anticoagulant laboratory diagnosis by applying the 2020 ISTH-SSC guidelines. Thromb. Res. 2023; 224: 38-45. https://dx.doi.org/10.1016/ j.thromres.2023.02.009
  20. Безнощенко О.С., Шпилюк М.А., Иванец Т.Ю., Кречетова Л.В., Пырегов А.В., Кодацкий Д.С., Тавлуева Е.В., Мелкумян А.Р., Городнова Е.А., Долгушина Н.В. Частота выявления и длительность циркуляции волчаночного антикоагулянта у пациентов с COVID-19. Российский иммунологический журнал. 2021; 24(3): 413-8. [Beznoshchenko O.S., Shpiluk M.A., Ivanets T.Yu., Krechetova L.V., Pyregov A.V., Kodatsky D.S., Tavluyeva E.V., Melkumyan A.R., Gorodnova E.A., Dolgushina N.V. Detection frequency and duration of lupus anticoagulant circulation in COVID-19 patients. Russian Journal of Immunology. 2021; 24(3): 413-8. (in Russian)]. https://dx.doi.org/10.46235/1028-7221-1042-DFA
  21. Королев А.Ю., Федорова Т.А., Пырегов А. В., Рогачевский О.В., Шмаков Р.Г., Безнощенко О.С. Tрансфузиологическое обеспечение абдоминального родоразрешения у беременных высокого риска развития кровотечения при контроле гемостаза. Медицинский совет. 2020; (13): 29-38. [Korolev A.Y., Fedorova T.A., Pyregov A.V., Rogachevskiy O.V., Shmakov R.G., Beznoshchenko O.S. Transfusion management of abdominal delivery in pregnant women at high risk of bleeding with hemostasis control. Medical Council. 2020; (13): 29-38. (in Russian)]. https://dx.doi.org/ 10.21518/2079-701X-2020-13-29-38
  22. Yoon U., Lai M., Nguyen T., Elia E. A 36-year-old woman with acute liver failure following acetaminophen overdose, raised INR of 8.7, and normal blood viscosity measured by rotational thromboelastometry (ROTEM). Am. J. Case Rep. 2023; 24: e938500. https://dx.doi.org/10.12659/AJCR.938500
  23. Durila M. Nonactivated thromboelastometry able to detect fibrinolysis in contrast to activated methods (EXTEM, INTEM) in a bleeding patient. Blood Coagul. Fibrinolysis. 2016; 27(7): 828-30. https://dx.doi.org/10.1097/MBC.0000000000000479
  24. Harr J.N., Moore E.E., Chin T.L., Chapman M.P., Ghasabyan A., Stringham J.R. et al. Viscoelastic hemostatic fibrinogen assays detect fibrinolysis early. Eur. J. Trauma Emerg. Surg. 2014; 41(1): 49-56. https://dx.doi.org/10.1007/ s00068-014-0400-0
  25. Ogawa S., Szlam F., Bolliger D., Nishimura T., Chen E.P., Tanaka K.A. The impact of hematocrit on fibrin clot formation assessed by rotational thromboelastometry. Anesth. Analg. 2012; 115(1): 16-21. https://dx.doi.org/ 10.1213/ANE.0b013e31824d523b
  26. Drotarova M., Zolkova J., Belakova K.M., Brunclikova M., Skornova I., Stasko J. et al. Basic principles of rotational thromboelastometry (ROTEM®) and the role of ROTEM—Guided fibrinogen replacement therapy in the management of coagulopathies. Diagnostics. 2023; 13(20): 3219. https://dx.doi.org/10.3390/diagnostics13203219
  27. Meesters M.I., Koch A., Kuiper G., Zacharowski K., Boer C. Instability of the non-activated rotational thromboelastometry assay (NATEM) in citrate stored blood. Thromb. Res. 2015; 136(2): 481-3. https://dx.doi.org/10.1016/ j.thromres.2015.05.026

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. NATEM thermograms in dynamics in patient C. with type III Willebrand's disease

Download (133KB)
3. 2. Dynamics of hemostasis system parameters and the thrombodynamic potential index (TPI) NATEM in patient C. with type III Willebrand's disease in the prenatal and postpartum period

Download (96KB)
4. Fig. 3. NATEM thermograms in dynamics in the girl F. with hereditary deficiency of f-VII

Download (121KB)
5. Fig. 4. NATEM thermograms in dynamics in a pregnant woman with Hageman's disease

Download (106KB)
6. 5. Temograms of patient P. with hemorrhagic syndrome in the postpartum period. The decrease in clot density (parameters A5, A]0 and A20) in FIBTEM and EXT (Fig. B, C) is due to fibrinogen deficiency and hyperfibrinolysis

Download (145KB)

Copyright (c) 2025 Bionika Media