Transformation of organic substances in the conjugate series of surface waters of North Karelia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this study, compositions of organic matter were investigated in the conjugate series of natural waters, including that from soil water, wetlands, streams, and lakes. In determinations of compositions of aliphatic and benzoic acids and humic substances, humic substances comprised the bulk of dissolved organic carbon, with 28% in lake waters and 57% in waters of wetlands and a weighted average molecular mass of 1 kDa. Aliphatic and benzoic acids comprised ≤ 2% of the total carbon content of water-soluble organic compounds. Transformations of dissolved organic matter occurred in a series of surveyed waters. Specifically, compositions and specific characteristics are dynamic, and increases in the fraction with a molecular weight of < 1 kDa were associated with photo- and bio-degradation of macromolecular organic compounds.

Full Text

Restricted Access

About the authors

O. Yu. Drozdova

Lomonosov Moscow State University

Author for correspondence.
Email: drozdova_olga@yahoo.fr
Russian Federation, 1, Leninskie gory, Moscow, 119991

S. M. Ilina

Bureau of Geological and Mining Studies

Email: drozdova_olga@yahoo.fr
France, 3, Ave. Claude-Giemen, Orlean, 45060

N. A. Anokhina

Lomonosov Moscow State University

Email: drozdova_olga@yahoo.fr
Russian Federation, 1, Leninskie gory, Moscow, 119991

Yu. A. Zavgorodnyaya

Lomonosov Moscow State University

Email: drozdova_olga@yahoo.fr
Russian Federation, 1, Leninskie gory, Moscow, 119991

V. V. Demin

Lomonosov Moscow State University

Email: drozdova_olga@yahoo.fr
Russian Federation, 1, Leninskie gory, Moscow, 119991

S. A. Lapitskiy

Lomonosov Moscow State University

Email: drozdova_olga@yahoo.fr
Russian Federation, 1, Leninskie gory, Moscow, 119991

References

  1. Аринушкина Е.В. Руководство по химическому анализу почв. М.: МГУ, 1970. 488 с.
  2. Линник П.Н., Набиванец Б.И. Формы миграции металлов в пресных поверхностных водах. Л.: Гидрометеоиздат, 1986. 268 с.
  3. Adani F., Ricca G., Tambone F., Genevini P. Isolation of the stable fraction, the core of the humic acid // Chemosphere. 2006. V. 65. № 8. P. 1300–1307.
  4. Aiken G.R. Isolation and concentration techniques for aquatic humic substances // Humic substances in soil, sediment and water: geochemistry and isolation / Eds Aiken G.R., McKnight D.M., Wershaw R.L., MacCarthy P. N. Y.: Wiley–Intersci., 1985. P. 363–385.
  5. Albinet A., Minero C., Vione D. Photochemical generation of reactive species upon irradiation of rainwater: negligible photoactivity of dissolved organic matter // Sci. Total Environ. 2010. V. 408. № 16. P. 3367–3373.
  6. Battin T.J. Dissolved organic materials and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela // Org. Geochem.1998. V. 28. P. 561–569.
  7. Chen Y., Senesi N., Schnitzer M. Information provided on humic substances by E4/E6 ratios // Soil Sci. Soc. Am. J. 1977. V. 41. № 2. P. 352–358.
  8. Chin Y.-P., Aiken G., O’Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances // Environ. Sci. Technol. 1994. V. 28. P. 1853–1858.
  9. De Haan H. Solar UV-light penetration and photodegradation of humic substances in peaty lake water // Limnol. Oceanogr.1993. V. 38. № 5. P. 1072–1076.
  10. Edzwald J.K., Tobiason J.E. Enhanced coagulation: US requirements and a broader view // Water Sci. Technol.1999. V. 40. P. 63–70.
  11. Guggenberger G., Christensen B.T., Zech W. Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature // Eur. J. Soil Sci.1994. V. 45. № 4. P. 449–458.
  12. Guo L., Semiletov I., Gustafsson O., Ingri J., Andersson P., Dudarev O., White D. Characterization of Siberian Arctic coastal sediments: implications for terrestrial organic carbon export // Global Biogeochem. Cycles. 2004. V. 18. № 1. GB1036. doi: 10.1029/2003GB002087.
  13. Hur J., Williams M.A., Schlautman M.A. Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis // Chemosphere. 2006. V. 63. P. 387–402.
  14. Ilina S.M., Lapitskiy S.A., Alekhin Y.V., Viers J., Benedetti M., Pokrovsky O.S. Speciation, size fractionation and transport of trace elements in the continuum soil water – mire – humic lake – river – large oligotrophic lake of a subarctic watershed // Aquat. Geochem. 2016. V. 22. № 1. P. 65–95.
  15. Jaffé R., Boyer J.N., Lu X., Maie N., Yang C., Scully N.M., Mock S. Source characterization of dissolved organic matter in a subtropical mangrovedominated estuary by fluorescence analysis // Mar. Chem. 2004. V. 84. P. 195–210.
  16. Matilainen A., Gjessing E.T., Lahtinen T., Hed L., Bhatnagar A., Sillanpaa M. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment // Chemosphere. 2011. V. 83. P. 1431–1442.
  17. Minor E., Stephens B. Dissolved organic matter characteristics within the Lake Superior watershed // Org. Geochem. 2008. V. 39. P. 1489–1501.
  18. Oliver B., Thurman E., Malcolm R. The contribution of humic substances to the acidity of colored natural waters // Geochim. Cosmochim. Acta. 1983. V. 47. P. 2031–2035.
  19. Onstad G.D., Canfield D.E., Quay P.D., Hedges J.I. Sources of particulate organic matter in rivers from the continental USA: lignin phenol and stable carbon isotope compositions // Geochim. Cosmochim. Acta. 2000. V. 64. № 20. P. 3539–3546.
  20. Pokrovsky O.S., Shirokova L.S., Kirpotin S.N., Audry S., Viers J., Dupré B. Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia // Biogeosci. 2011. V. 8. P. 565–583.
  21. Prokushkin A.S., Pokrovsky O.S., Shirokova L.S., Korets M.A., Viers J., Prokushkin S.G., Amon R.M.W., Guggenberger G., McDowell W.H. Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau // Environ. Res. Lett. 2011. V. 6. № 4. P. 45212–45225.
  22. Schnitzer M., Calderoni G. Some chemical characteristics of paleosol humic acids // Chem. Geol. 1985. V. 53. № 3–4. P. 175–184.
  23. See J.H., Bronk D.A. Changes in C:N ratios and chemical structures of estuarine humic substances during aging // Mar. Chem. 2005. V. 97. № 3–4. P. 334–346.
  24. Stevenson F.J. Humus chemistry. Genesis, composition, reactions. 2nd Edition. N. Y.: John Wiley & Sons, 1994. 512 p.
  25. Thorn K.A., Younger S.J., Cox L.G. Order of functionality loss during photodegradation of aquatic humic substances // J. Environ. Qual. 2010. V. 39. № 4. P. 1416–1428.
  26. Thurman E.M., Malcolm R.L. Preparative isolation of aquatic humic substances // Environ. Sci. Technol. 1981. V. 15. № 4. P. 463–466.
  27. Town R.M., Filella M. A comprehensive systematic compilation of complexation parameters reported for trace metals in natural waters // Aquat. Sci. 2000. V. 62. № 3. P. 252–295.
  28. Tranvik L.J. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content // Microb. Ecol. 1988. V. 16. № 3. P. 311–322.
  29. Tremblay L., Benner R. Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus // Geochim. Cosmochim. Acta. 2006. V. 70. № 1. P. 133–146.
  30. Twichell S.C., Meyersa P.A., Diester-Haass L. Significance of high C/N ratios in organic–carbon–rich Neogene sediments under the Benguela Current upwelling system // Org. Geochem. 2002. V. 33. № 7. P. 715–722.
  31. Uyguner C., Bekbolet M. Implementation of spectroscopic parameters for practical monitoring of natural organic matter // Desalination. 2005. V. 176. № 1–3. P. 47–55.
  32. Wang G.S., Liao C.H., Wu F.J. Photodegradation of humic acids in the presence of hydrogen peroxide // Chemosphere. 2001. V. 42. № 4. P. 379–387.
  33. Wilkinson K.J., Joz-Roland A., Buffle J. Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters // Limnol. Oceanogr. 1997. V. 42. № 8. P. 1714–1724.
  34. Wolfe A.P., Kaushal S.S., Fulton J.R., McKnight D.M. Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment // Environ. Sci. Technol. 2002. V. 36. № 15. P. 3217–3223.
  35. Zuo Y., Jones R.D. Photochemistry of natural dissolved organic matter in lake and wetland waters – production of carbon monoxide // Water Res. 1997. V. 31. № 4. P. 850–858.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sampling scheme. The points of selection of soil waters (1), waters of the upper bog feeding the stream (2), in the source of the stream (3), in the middle course of the stream (4), at the mouth of the stream (5), waters of the lake Zipringa (6).

Download (80KB)
3. Fig. 2. Values of pH, C / N and DOC content in natural waters.

Download (116KB)
4. Fig. 3. Values of SUVA, E254 / E436 and E470 / E655 in natural waters.

Download (118KB)
5. Fig. 4. Chromatograms of the distribution of humic substances isolated from natural waters.

Download (97KB)
6. Fig. 5. Distribution of DOC by size fractions in shares,%, of the initial content in natural waters.

Download (129KB)

Copyright (c) 2019 Russian Academy of Sciences