Features of the balance structure formation of groundwater withdrawal and its effect on river flow at a subsoil water level drawdown

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The balance structure of the pumpage sourses of riverside water-intakes, developing a subsoil aquifer or intermediate water that hydraulically interacts with it, can show the effect of the processes of water balance adjustment in the unsaturated zone to the accompanying subsoil water level drawdown. In this case, because of the shallow depth to subsoil water, its level drop due to water withdrawal causes a decrease in evapotranspiration and an increase in groundwater infiltration recharge. These processes have their effect on the balance structure of usable water resources as components of natural and involved resources and reduce the impact of groundwater pumping on river flow. Analysis of the operational data of the Sudogda waterintake in Vladimir oblast and geohydrological modeling were used to evaluate variations of the groundwater evaportanspiration losses and infiltration recharge and their role in the water balance structure of reserves of a field and in the impact of groundwater withdrawal on river flow.

Full Text

Restricted Access

About the authors

S. O. Grinevsky

Lomonosov Moscow State University

Author for correspondence.
Email: sogrin@geol.msu.ru
Russian Federation, Moscow

V. S. Sporyshev

Lomonosov Moscow State University

Email: sogrin@geol.msu.ru
Russian Federation, Moscow

References

  1. Гриневский С.О. Оценка инфильтрационного питания и ресурсов подземных вод на основе геогидрологических моделей. Дис. … докт. геол-минерал. наук. М.: МГУ, 2012.
  2. Гриневский С.О. Моделирование поглощения влаги корнями растений при расчетах влагопереноса в зоне аэрации и инфильтрационного питания подземных вод // Вестн. МГУ. Сер. 4. Геология. 2011. № 3. С. 41–52.
  3. Гриневский С.О. Схематизация строения и параметров зоны аэрации для моделирования инфильтрационного питания подземных вод // Вестн. МГУ. Сер. 4. Геология. 2010. № 6. С. 56–67.
  4. Гриневский С.О. Гидрогеодинамическое моделирование взаимодействия подземных и поверхностных вод. М.: Инфра-М, 2012. 152 с.
  5. Гриневский С.О., Новоселова М.В. Закономерности формирования инфильтрационного питания подземных вод // Вод. ресурсы. 2011. Т. 38. № 2. С. 169–180.
  6. Гриневский С.О., Поздняков С.П. Принципы региональной оценки инфильтрационного питания подземных вод на основе геогидрологических моделей // Вод. ресурсы. 2010. Т. 37. № 5. С. 543–557.
  7. Информационные ресурсы почвенного института им. В.В. Докучаева. URL: http://egrpr.esoil.ru/download.php (Дата обращения 08.06.2015).
  8. Шестаков В.М., Пашковский И.С., Сойфер А.М. Гидрогеологические исследования на орошаемых территориях. М.: Недра, 1982. 244 с.
  9. Шестаков В.М., Поздняков С.П. Геогидрология. М.: Академкнига, 2003. 173 с.
  10. Штенгелов Р.С. Формирование и оценка эксплуатационных запасов пресных подземных вод. М.: Недра, 1988. 231 с.
  11. Harbaugh A., Banta E., Hill M., McDonald M. MODFLOW-2000, the U. S. Geological Survey modular ground-water model–User guide to modularization concepts and the ground-water flow process. Reston, Virginia: U. S. Geol. Surv., Open File Rep., 2000. 92 p.
  12. Schaap M.G., Leij F.L., van Genuchten M.Th. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions // J. Hydrol. 2001. V. 251. P. 163–176.
  13. Šimůnek J., Šejna M., Saito H., Sakai M., van Genuchten M.Th. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Ver. 4.08. Riverside, California: Prepr. Depart. of Environ. Sci. Univ. California Riverside, 2009. 296 р.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in infiltration feeding and evapotranspiration discharge of groundwater with a decrease in groundwater table.

Download (121KB)
3. Fig. 2. Hydrogeological section through the valley. Sudogdy.

Download (473KB)
4. Fig. 3. The regime of water withdrawal and groundwater levels of the underground horizon and the Gzhel-Asselian aquiferous complex.

Download (201KB)
5. Fig. 4. A schematic map of the location of gauging stations, observation wells and the calculated lowering of groundwater levels at the Sudogodsky MPV.

Download (320KB)
6. Fig. 5. Comparison of model (1) and actual (2) average winter snow depth for the billing period 1965–2012. (but); mean annual intra-annual dynamics of snow accumulation and melting (b).

Download (254KB)
7. Fig. 6. Calculated dependencies of PI (+ W) and ETR (–W) on the depth of groundwater table (Z) for various landscape conditions of the r. Sudogdy.

Download (153KB)
8. Fig. 7. Comparison of model and actual: (a) - costs of natural discharge of groundwater; (b) - reduce runoff p. Sudogdy when water in the areas between the gauging stations.

Download (169KB)
9. Fig. 8. The balance structure of the operational water intake at the Sudogodsky MPV according to the results of geohydrological modeling.

Download (123KB)

Copyright (c) 2019 Russian academy of sciences